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Release v18.0.0 (What’s new?).

pyOpenSSL is a rather thin wrapper around (a subset of) the OpenSSL library. With thin wrapper we mean that a lot
of the object methods do nothing more than calling a corresponding function in the OpenSSL library.

Contents 1
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2 Contents



CHAPTER 1

Contents:

1.1 Introduction

1.1.1 History

pyOpenSSL was originally created by Martin Sjögren because the SSL support in the standard library in Python 2.1
(the contemporary version of Python when the pyOpenSSL project was begun) was severely limited. Other OpenSSL
wrappers for Python at the time were also limited, though in different ways.

Later it was maintained by Jean-Paul Calderone who among other things managed to make pyOpenSSL a pure Python
project which the current maintainers are very grateful for.

Over the time the standard library’s ssl module improved, never reaching the completeness of pyOpenSSL’s API
coverage. Despite PEP 466 many useful features remain Python 3-only and pyOpenSSL remains the only alternative
for full-featured TLS code across all noteworthy Python versions from 2.7 through 3.5 and PyPy.

1.1.2 Development

pyOpenSSL is collaboratively developed by the Python Cryptography Authority (PyCA) that also maintains the low-
level bindings called cryptography.

Current maintainer and release manager is Hynek Schlawack.

1.1.3 Contributing

First of all, thank you for your interest in contributing to pyOpenSSL! This project has no company backing its
development therefore we’re dependent on help by the community.
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Filing bug reports

Bug reports are very welcome. Please file them on the GitHub issue tracker. Good bug reports come with extensive
descriptions of the error and how to reproduce it. Reporters are strongly encouraged to include an short, self contained,
correct example.

Patches

All patches to pyOpenSSL should be submitted in the form of pull requests to the main pyOpenSSL repository,
pyca/pyopenssl. These pull requests should satisfy the following properties:

Code

• The pull request should focus on one particular improvement to pyOpenSSL. Create different pull requests for
unrelated features or bugfixes.

• Code should follow PEP 8, especially in the “do what code around you does” sense. Follow OpenSSL naming
for callables whenever possible is preferred.

• Pull requests that introduce code must test all new behavior they introduce as well as for previously untested or
poorly tested behavior that they touch.

• Pull requests are not allowed to break existing tests. We usually don’t comment on pull requests that are breaking
the CI because we consider them work in progress. Please note that not having 100% code coverage for the code
you wrote/touched also causes our CI to fail.

Documentation

When introducing new functionality, please remember to write documentation.

• New functions and methods should have a docstring describing what they do, what parameters they takes, what
types those parameters are, and what they return.

def dump_publickey(type, pkey):
"""
Dump a public key to a buffer.

:param type: The file type (one of :data:`FILETYPE_PEM` or
:data:`FILETYPE_ASN1`).

:param PKey pkey: The PKey to dump.

:return: The buffer with the dumped key in it.
:rtype: bytes
"""

Don’t forget to add an .. auto(function|class|method):: statement to the relevant API document
found in doc/api/ to actually add your function to the Sphinx documentation.

• Do not use :py: prefixes when cross-linking (Python is default). Do not use the generic :data: or :obj:.
Instead use more specific types like :class:, :func: or :meth: if applicable.

• Pull requests that introduce features or fix bugs should note those changes in the CHANGELOG.rst file. Please
add new entries to the top of the current Changes section followed by a line linking to the relevant pull request:

4 Chapter 1. Contents:
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- Added ``OpenSSL.crypto.some_func()`` to do something awesome.
[`#1 <https://github.com/pyca/pyopenssl/pull/1>`_]

• Use semantic newlines in reStructuredText files (files ending in .rst).

Review

Finally, pull requests must be reviewed before merging. This process mirrors the cryptography code review process.
Everyone can perform reviews; this is a very valuable way to contribute, and is highly encouraged.

Pull requests are merged by members of PyCA. They should, of course, keep all the requirements detailed in this
document as well as the pyca/cryptography merge requirements in mind.

The final responsibility for the reviewing of merged code lies with the person merging it. Since pyOpenSSL is a
sensitive project from a security perspective, reviewers are strongly encouraged to take this review and merge process
very seriously.

Finding Help

If you need any help with the contribution process, you’ll find us hanging out at #cryptography-dev on Freenode
IRC. You can also ask questions on our mailing list.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree
to abide by its terms.

Security

If you feel that you found a security-relevant bug that you would prefer to discuss in private, please send us a GPG-
encrypted e-mail.

The maintainer can be reached at hs@ox.cx and his GPG key ID is 0xAE2536227F69F181 (Fingerprint: C2A0
4F86 ACE2 8ADC F817 DBB7 AE25 3622 7F69 F181). Feel free to cross-check this information with
Keybase.

1.2 Installation

To install pyOpenSSL:

$ pip install pyopenssl

If you are installing in order to develop on pyOpenSSL, move to the root directory of a pyOpenSSL checkout, and run:

$ pip install -e .

Warning: As of 0.14, pyOpenSSL is a pure-Python project. That means that if you encounter any kind of
compiler errors, pyOpenSSL’s bugtracker is the wrong place to report them because we cannot help you.

Please take the time to read the errors and report them/ask help from the appropriate project. The most likely
culprit being cryptography that contains OpenSSL’s library bindings.

1.2. Installation 5
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1.2.1 Supported OpenSSL Versions

pyOpenSSL supports the same platforms and releases as the upstream cryptography project does. Currently that
means:

• 1.0.1

• 1.0.2

• 1.1.0

If you need support for older releases, the following pinned versions will work:

• OpenSSL 0.9.8: 'pyOpenSSL<17.0' 'cryptography<1.4'

• OpenSSL 1.0.0: 'pyOpenSSL<17.1' 'cryptography<1.7'

You can always find out the versions of pyOpenSSL, cryptography, and the linked OpenSSL by running python -m
OpenSSL.debug.

1.2.2 Documentation

The documentation is written in reStructuredText and built using Sphinx:

$ cd doc
$ make html

1.3 OpenSSL — Python interface to OpenSSL

This package provides a high-level interface to the functions in the OpenSSL library. The following modules are
defined:

1.3.1 crypto — Generic cryptographic module

Note: pyca/cryptography is likely a better choice than using this module. It contains a complete set of cryptographic
primitives as well as a significantly better and more powerful X509 API. If necessary you can convert to and from
cryptography objects using the to_cryptography and from_cryptography methods on X509, X509Req,
CRL, and PKey.

Elliptic curves

OpenSSL.crypto.get_elliptic_curves()
Return a set of objects representing the elliptic curves supported in the OpenSSL build in use.

The curve objects have a unicode name attribute by which they identify themselves.

The curve objects are useful as values for the argument accepted by Context.set_tmp_ecdh() to specify
which elliptical curve should be used for ECDHE key exchange.

OpenSSL.crypto.get_elliptic_curve(name)
Return a single curve object selected by name.

See get_elliptic_curves() for information about curve objects.

6 Chapter 1. Contents:
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Parameters name (unicode) – The OpenSSL short name identifying the curve object to retrieve.

If the named curve is not supported then ValueError is raised.

Serialization and deserialization

The following serialization functions take one of these constants to determine the format.

OpenSSL.crypto.FILETYPE_PEM

FILETYPE_PEM serializes data to a Base64-encoded encoded representation of the underlying ASN.1 data struc-
ture. This representation includes delimiters that define what data structure is contained within the Base64-encoded
block: for example, for a certificate, the delimiters are -----BEGIN CERTIFICATE----- and -----END
CERTIFICATE-----.

OpenSSL.crypto.FILETYPE_ASN1

FILETYPE_ASN1 serializes data to the underlying ASN.1 data structure. The format used by FILETYPE_ASN1 is
also sometimes referred to as DER.

Certificates

OpenSSL.crypto.dump_certificate(type, cert)
Dump the certificate cert into a buffer string encoded with the type type.

Parameters

• type – The file type (one of FILETYPE_PEM, FILETYPE_ASN1, or FILETYPE_TEXT)

• cert – The certificate to dump

Returns The buffer with the dumped certificate in

OpenSSL.crypto.load_certificate(type, buffer)
Load a certificate (X509) from the string buffer encoded with the type type.

Parameters

• type – The file type (one of FILETYPE_PEM, FILETYPE_ASN1)

• buffer (bytes) – The buffer the certificate is stored in

Returns The X509 object

Certificate signing requests

OpenSSL.crypto.dump_certificate_request(type, req)
Dump the certificate request req into a buffer string encoded with the type type.

Parameters

• type – The file type (one of FILETYPE_PEM, FILETYPE_ASN1)

• req – The certificate request to dump

Returns The buffer with the dumped certificate request in

OpenSSL.crypto.load_certificate_request(type, buffer)
Load a certificate request (X509Req) from the string buffer encoded with the type type.

Parameters

1.3. OpenSSL — Python interface to OpenSSL 7
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• type – The file type (one of FILETYPE_PEM, FILETYPE_ASN1)

• buffer – The buffer the certificate request is stored in

Returns The X509Req object

Private keys

OpenSSL.crypto.dump_privatekey(type, pkey, cipher=None, passphrase=None)
Dump the private key pkey into a buffer string encoded with the type type. Optionally (if type is
FILETYPE_PEM ) encrypting it using cipher and passphrase.

Parameters

• type – The file type (one of FILETYPE_PEM , FILETYPE_ASN1, or
FILETYPE_TEXT)

• pkey (PKey) – The PKey to dump

• cipher – (optional) if encrypted PEM format, the cipher to use

• passphrase – (optional) if encrypted PEM format, this can be either the passphrase to
use, or a callback for providing the passphrase.

Returns The buffer with the dumped key in

Return type bytes

OpenSSL.crypto.load_privatekey(type, buffer, passphrase=None)
Load a private key (PKey) from the string buffer encoded with the type type.

Parameters

• type – The file type (one of FILETYPE_PEM, FILETYPE_ASN1)

• buffer – The buffer the key is stored in

• passphrase – (optional) if encrypted PEM format, this can be either the passphrase to
use, or a callback for providing the passphrase.

Returns The PKey object

Public keys

OpenSSL.crypto.dump_publickey(type, pkey)
Dump a public key to a buffer.

Parameters

• type – The file type (one of FILETYPE_PEM or FILETYPE_ASN1).

• pkey (PKey) – The public key to dump

Returns The buffer with the dumped key in it.

Return type bytes

OpenSSL.crypto.load_publickey(type, buffer)
Load a public key from a buffer.

Parameters

• type – The file type (one of FILETYPE_PEM , FILETYPE_ASN1).

8 Chapter 1. Contents:
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• buffer (A Python string object, either unicode or bytestring.)
– The buffer the key is stored in.

Returns The PKey object.

Return type PKey

Certificate revocation lists

OpenSSL.crypto.dump_crl(type, crl)
Dump a certificate revocation list to a buffer.

Parameters

• type – The file type (one of FILETYPE_PEM, FILETYPE_ASN1, or
FILETYPE_TEXT).

• crl (CRL) – The CRL to dump.

Returns The buffer with the CRL.

Return type bytes

OpenSSL.crypto.load_crl(type, buffer)
Load Certificate Revocation List (CRL) data from a string buffer. buffer encoded with the type type.

Parameters

• type – The file type (one of FILETYPE_PEM, FILETYPE_ASN1)

• buffer – The buffer the CRL is stored in

Returns The PKey object

OpenSSL.crypto.load_pkcs7_data(type, buffer)
Load pkcs7 data from the string buffer encoded with the type type.

Parameters

• type – The file type (one of FILETYPE_PEM or FILETYPE_ASN1)

• buffer – The buffer with the pkcs7 data.

Returns The PKCS7 object

OpenSSL.crypto.load_pkcs12(buffer, passphrase=None)
Load pkcs12 data from the string buffer. If the pkcs12 structure is encrypted, a passphrase must be included.
The MAC is always checked and thus required.

See also the man page for the C function PKCS12_parse().

Parameters

• buffer – The buffer the certificate is stored in

• passphrase – (Optional) The password to decrypt the PKCS12 lump

Returns The PKCS12 object

Signing and verifying signatures

OpenSSL.crypto.sign(pkey, data, digest)
Sign a data string using the given key and message digest.

1.3. OpenSSL — Python interface to OpenSSL 9
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Parameters

• pkey – PKey to sign with

• data – data to be signed

• digest – message digest to use

Returns signature

New in version 0.11.

OpenSSL.crypto.verify(cert, signature, data, digest)
Verify the signature for a data string.

Parameters

• cert – signing certificate (X509 object) corresponding to the private key which generated
the signature.

• signature – signature returned by sign function

• data – data to be verified

• digest – message digest to use

Returns None if the signature is correct, raise exception otherwise.

New in version 0.11.

X509 objects

class OpenSSL.crypto.X509
An X.509 certificate.

add_extensions(extensions)
Add extensions to the certificate.

Parameters extensions (An iterable of X509Extension objects.) – The extensions to
add.

Returns None

digest(digest_name)
Return the digest of the X509 object.

Parameters digest_name (bytes) – The name of the digest algorithm to use.

Returns The digest of the object, formatted as b":"-delimited hex pairs.

Return type bytes

classmethod from_cryptography(crypto_cert)
Construct based on a cryptography crypto_cert.

Parameters crypto_key (cryptography.x509.Certificate) – A
cryptography X.509 certificate.

Return type PKey

New in version 17.1.0.

get_extension(index)
Get a specific extension of the certificate by index.

Extensions on a certificate are kept in order. The index parameter selects which extension will be returned.

10 Chapter 1. Contents:
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Parameters index (int) – The index of the extension to retrieve.

Returns The extension at the specified index.

Return type X509Extension

Raises IndexError – If the extension index was out of bounds.

New in version 0.12.

get_extension_count()
Get the number of extensions on this certificate.

Returns The number of extensions.

Return type int

New in version 0.12.

get_issuer()
Return the issuer of this certificate.

This creates a new X509Name that wraps the underlying issuer name field on the certificate. Modifying
it will modify the underlying certificate, and will have the effect of modifying any other X509Name that
refers to this issuer.

Returns The issuer of this certificate.

Return type X509Name

get_notAfter()
Get the timestamp at which the certificate stops being valid.

The timestamp is formatted as an ASN.1 TIME:

YYYYMMDDhhmmssZ

Returns A timestamp string, or None if there is none.

Return type bytes or NoneType

get_notBefore()
Get the timestamp at which the certificate starts being valid.

The timestamp is formatted as an ASN.1 TIME:

YYYYMMDDhhmmssZ

Returns A timestamp string, or None if there is none.

Return type bytes or NoneType

get_pubkey()
Get the public key of the certificate.

Returns The public key.

Return type PKey

get_serial_number()
Return the serial number of this certificate.

Returns The serial number.

1.3. OpenSSL — Python interface to OpenSSL 11
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Return type int

get_signature_algorithm()
Return the signature algorithm used in the certificate.

Returns The name of the algorithm.

Return type bytes

Raises ValueError – If the signature algorithm is undefined.

New in version 0.13.

get_subject()
Return the subject of this certificate.

This creates a new X509Name that wraps the underlying subject name field on the certificate. Modifying
it will modify the underlying certificate, and will have the effect of modifying any other X509Name that
refers to this subject.

Returns The subject of this certificate.

Return type X509Name

get_version()
Return the version number of the certificate.

Returns The version number of the certificate.

Return type int

gmtime_adj_notAfter(amount)
Adjust the time stamp on which the certificate stops being valid.

Parameters amount (int) – The number of seconds by which to adjust the timestamp.

Returns None

gmtime_adj_notBefore(amount)
Adjust the timestamp on which the certificate starts being valid.

Parameters amount – The number of seconds by which to adjust the timestamp.

Returns None

has_expired()
Check whether the certificate has expired.

Returns True if the certificate has expired, False otherwise.

Return type bool

set_issuer(issuer)
Set the issuer of this certificate.

Parameters issuer (X509Name) – The issuer.

Returns None

set_notAfter(when)
Set the timestamp at which the certificate stops being valid.

The timestamp is formatted as an ASN.1 TIME:

YYYYMMDDhhmmssZ

Parameters when (bytes) – A timestamp string.

12 Chapter 1. Contents:
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Returns None

set_notBefore(when)
Set the timestamp at which the certificate starts being valid.

The timestamp is formatted as an ASN.1 TIME:

YYYYMMDDhhmmssZ

Parameters when (bytes) – A timestamp string.

Returns None

set_pubkey(pkey)
Set the public key of the certificate.

Parameters pkey (PKey) – The public key.

Returns None

set_serial_number(serial)
Set the serial number of the certificate.

Parameters serial (int) – The new serial number.

Returns :py:data‘None‘

set_subject(subject)
Set the subject of this certificate.

Parameters subject (X509Name) – The subject.

Returns None

set_version(version)
Set the version number of the certificate.

Parameters version (int) – The version number of the certificate.

Returns None

sign(pkey, digest)
Sign the certificate with this key and digest type.

Parameters

• pkey (PKey) – The key to sign with.

• digest (bytes) – The name of the message digest to use.

Returns None

subject_name_hash()
Return the hash of the X509 subject.

Returns The hash of the subject.

Return type bytes

to_cryptography()
Export as a cryptography certificate.

Return type cryptography.x509.Certificate

New in version 17.1.0.

1.3. OpenSSL — Python interface to OpenSSL 13
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X509Name objects

class OpenSSL.crypto.X509Name(name)
An X.509 Distinguished Name.

Variables

• countryName – The country of the entity.

• C – Alias for countryName.

• stateOrProvinceName – The state or province of the entity.

• ST – Alias for stateOrProvinceName.

• localityName – The locality of the entity.

• L – Alias for localityName.

• organizationName – The organization name of the entity.

• O – Alias for organizationName.

• organizationalUnitName – The organizational unit of the entity.

• OU – Alias for organizationalUnitName

• commonName – The common name of the entity.

• CN – Alias for commonName.

• emailAddress – The e-mail address of the entity.

__init__(name)
Create a new X509Name, copying the given X509Name instance.

Parameters name (X509Name) – The name to copy.

__setattr__(name, value)
x.__setattr__(‘name’, value) <==> x.name = value

der()
Return the DER encoding of this name.

Returns The DER encoded form of this name.

Return type bytes

get_components()
Returns the components of this name, as a sequence of 2-tuples.

Returns The components of this name.

Return type list of name, value tuples.

hash()
Return an integer representation of the first four bytes of the MD5 digest of the DER representation of the
name.

This is the Python equivalent of OpenSSL’s X509_NAME_hash.

Returns The (integer) hash of this name.

Return type int

14 Chapter 1. Contents:
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X509Req objects

class OpenSSL.crypto.X509Req
An X.509 certificate signing requests.

__init__()
x.__init__(. . . ) initializes x; see help(type(x)) for signature

add_extensions(extensions)
Add extensions to the certificate signing request.

Parameters extensions (iterable of X509Extension) – The X.509 extensions to add.

Returns None

classmethod from_cryptography(crypto_req)
Construct based on a cryptography crypto_req.

Parameters crypto_req (cryptography.x509.CertificateSigningRequest)
– A cryptography X.509 certificate signing request

Return type PKey

New in version 17.1.0.

get_extensions()
Get X.509 extensions in the certificate signing request.

Returns The X.509 extensions in this request.

Return type list of X509Extension objects.

New in version 0.15.

get_pubkey()
Get the public key of the certificate signing request.

Returns The public key.

Return type PKey

get_subject()
Return the subject of this certificate signing request.

This creates a new X509Name that wraps the underlying subject name field on the certificate signing
request. Modifying it will modify the underlying signing request, and will have the effect of modifying
any other X509Name that refers to this subject.

Returns The subject of this certificate signing request.

Return type X509Name

get_version()
Get the version subfield (RFC 2459, section 4.1.2.1) of the certificate request.

Returns The value of the version subfield.

Return type int

set_pubkey(pkey)
Set the public key of the certificate signing request.

Parameters pkey (PKey) – The public key to use.

Returns None

1.3. OpenSSL — Python interface to OpenSSL 15
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set_version(version)
Set the version subfield (RFC 2459, section 4.1.2.1) of the certificate request.

Parameters version (int) – The version number.

Returns None

sign(pkey, digest)
Sign the certificate signing request with this key and digest type.

Parameters

• pkey (PKey) – The key pair to sign with.

• digest (bytes) – The name of the message digest to use for the signature, e.g.
b"sha256".

Returns None

to_cryptography()
Export as a cryptography certificate signing request.

Return type cryptography.x509.CertificateSigningRequest

New in version 17.1.0.

verify(pkey)
Verifies the signature on this certificate signing request.

Parameters key (PKey) – A public key.

Returns True if the signature is correct.

Return type bool

Raises OpenSSL.crypto.Error – If the signature is invalid or there is a problem verifying
the signature.

X509Store objects

class OpenSSL.crypto.X509Store
An X.509 store.

An X.509 store is used to describe a context in which to verify a certificate. A description of a context may
include a set of certificates to trust, a set of certificate revocation lists, verification flags and more.

An X.509 store, being only a description, cannot be used by itself to verify a certificate. To carry out the actual
verification process, see X509StoreContext.

add_cert(cert)
Adds a trusted certificate to this store.

Adding a certificate with this method adds this certificate as a trusted certificate.

Parameters cert (X509) – The certificate to add to this store.

Raises

• TypeError – If the certificate is not an X509.

• OpenSSL.crypto.Error – If OpenSSL was unhappy with your certificate.

Returns None if the certificate was added successfully.
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add_crl(crl)
Add a certificate revocation list to this store.

The certificate revocation lists added to a store will only be used if the associated flags are configured to
check certificate revocation lists.

New in version 16.1.0.

Parameters crl (CRL) – The certificate revocation list to add to this store.

Returns None if the certificate revocation list was added successfully.

set_flags(flags)
Set verification flags to this store.

Verification flags can be combined by oring them together.

Note: Setting a verification flag sometimes requires clients to add additional information to the store,
otherwise a suitable error will be raised.

For example, in setting flags to enable CRL checking a suitable CRL must be added to the store otherwise
an error will be raised.

New in version 16.1.0.

Parameters flags (int) – The verification flags to set on this store. See X509StoreFlags
for available constants.

Returns None if the verification flags were successfully set.

set_time(vfy_time)
Set the time against which the certificates are verified.

Normally the current time is used.

Note: For example, you can determine if a certificate was valid at a given time.

New in version 17.0.0.

Parameters vfy_time (datetime) – The verification time to set on this store.

Returns None if the verification time was successfully set.

X509StoreContextError objects

class OpenSSL.crypto.X509StoreContextError(message, certificate)
An exception raised when an error occurred while verifying a certificate using
OpenSSL.X509StoreContext.verify_certificate.

Variables certificate – The certificate which caused verificate failure.

X509StoreContext objects

class OpenSSL.crypto.X509StoreContext(store, certificate)
An X.509 store context.

An X.509 store context is used to carry out the actual verification process of a certificate in a described context.
For describing such a context, see X509Store.

1.3. OpenSSL — Python interface to OpenSSL 17

https://docs.python.org/3/library/functions.html#int


pyOpenSSL Documentation, Release 18.0.0

Variables

• _store_ctx – The underlying X509_STORE_CTX structure used by this instance. It is
dynamically allocated and automatically garbage collected.

• _store – See the store __init__ parameter.

• _cert – See the certificate __init__ parameter.

Parameters

• store (X509Store) – The certificates which will be trusted for the purposes of any
verifications.

• certificate (X509) – The certificate to be verified.

set_store(store)
Set the context’s X.509 store.

New in version 0.15.

Parameters store (X509Store) – The store description which will be used for the purposes
of any future verifications.

verify_certificate()
Verify a certificate in a context.

New in version 0.15.

Raises X509StoreContextError – If an error occurred when validating a certificate in the
context. Sets certificate attribute to indicate which certificate caused the error.

X509StoreFlags constants

class OpenSSL.crypto.X509StoreFlags
Flags for X509 verification, used to change the behavior of X509Store.

See OpenSSL Verification Flags for details.

CRL_CHECK

CRL_CHECK_ALL

IGNORE_CRITICAL

X509_STRICT

ALLOW_PROXY_CERTS

POLICY_CHECK

EXPLICIT_POLICY

INHIBIT_MAP

NOTIFY_POLICY

CHECK_SS_SIGNATURE

CB_ISSUER_CHECK
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PKey objects

class OpenSSL.crypto.PKey
A class representing an DSA or RSA public key or key pair.

bits()
Returns the number of bits of the key

Returns The number of bits of the key.

check()
Check the consistency of an RSA private key.

This is the Python equivalent of OpenSSL’s RSA_check_key.

Returns True if key is consistent.

Raises

• OpenSSL.crypto.Error – if the key is inconsistent.

• TypeError – if the key is of a type which cannot be checked. Only RSA keys can
currently be checked.

classmethod from_cryptography_key(crypto_key)
Construct based on a cryptography crypto_key.

Parameters crypto_key (One of cryptography’s key interfaces.) – A cryptography
key.

Return type PKey

New in version 16.1.0.

generate_key(type, bits)
Generate a key pair of the given type, with the given number of bits.

This generates a key “into” the this object.

Parameters

• type (TYPE_RSA or TYPE_DSA) – The key type.

• bits (int >= 0) – The number of bits.

Raises

• TypeError – If type or bits isn’t of the appropriate type.

• ValueError – If the number of bits isn’t an integer of the appropriate size.

Returns None

to_cryptography_key()
Export as a cryptography key.

Return type One of cryptography’s key interfaces.

New in version 16.1.0.

type()
Returns the type of the key

Returns The type of the key.

OpenSSL.crypto.TYPE_RSA
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OpenSSL.crypto.TYPE_DSA
Key type constants.

PKCS7 objects

PKCS7 objects have the following methods:

class OpenSSL.crypto.PKCS7

get_type_name()
Returns the type name of the PKCS7 structure

Returns A string with the typename

type_is_data()
Check if this NID_pkcs7_data object

Returns True if the PKCS7 is of type data

type_is_enveloped()
Check if this NID_pkcs7_enveloped object

Returns True if the PKCS7 is of type enveloped

type_is_signed()
Check if this NID_pkcs7_signed object

Returns True if the PKCS7 is of type signed

type_is_signedAndEnveloped()
Check if this NID_pkcs7_signedAndEnveloped object

Returns True if the PKCS7 is of type signedAndEnveloped

PKCS12 objects

class OpenSSL.crypto.PKCS12
A PKCS #12 archive.

export(passphrase=None, iter=2048, maciter=1)
Dump a PKCS12 object as a string.

For more information, see the PKCS12_create() man page.

Parameters

• passphrase (bytes) – The passphrase used to encrypt the structure. Unlike some
other passphrase arguments, this must be a string, not a callback.

• iter (int) – Number of times to repeat the encryption step.

• maciter (int) – Number of times to repeat the MAC step.

Returns The string representation of the PKCS #12 structure.

Return type

get_ca_certificates()
Get the CA certificates in the PKCS #12 structure.

Returns A tuple with the CA certificates in the chain, or None if there are none.

Return type tuple of X509 or None
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get_certificate()
Get the certificate in the PKCS #12 structure.

Returns The certificate, or None if there is none.

Return type X509 or None

get_friendlyname()
Get the friendly name in the PKCS# 12 structure.

Returns The friendly name, or None if there is none.

Return type bytes or None

get_privatekey()
Get the private key in the PKCS #12 structure.

Returns The private key, or None if there is none.

Return type PKey

set_ca_certificates(cacerts)
Replace or set the CA certificates within the PKCS12 object.

Parameters cacerts (An iterable of X509 or None) – The new CA certificates, or None to
unset them.

Returns None

set_certificate(cert)
Set the certificate in the PKCS #12 structure.

Parameters cert (X509 or None) – The new certificate, or None to unset it.

Returns None

set_friendlyname(name)
Set the friendly name in the PKCS #12 structure.

Parameters name (bytes or None) – The new friendly name, or None to unset.

Returns None

set_privatekey(pkey)
Set the certificate portion of the PKCS #12 structure.

Parameters pkey (PKey or None) – The new private key, or None to unset it.

Returns None

X509Extension objects

class OpenSSL.crypto.X509Extension(type_name, critical, value, subject=None, issuer=None)
An X.509 v3 certificate extension.

__init__(type_name, critical, value, subject=None, issuer=None)
Initializes an X509 extension.

Parameters

• type_name (bytes) – The name of the type of extension to create.

• critical (bool) – A flag indicating whether this is a critical extension.

• value (bytes) – The value of the extension.
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• subject (X509) – Optional X509 certificate to use as subject.

• issuer (X509) – Optional X509 certificate to use as issuer.

__str__()

Returns a nice text representation of the extension

get_critical()
Returns the critical field of this X.509 extension.

Returns The critical field.

get_data()
Returns the data of the X509 extension, encoded as ASN.1.

Returns The ASN.1 encoded data of this X509 extension.

Return type bytes

New in version 0.12.

get_short_name()
Returns the short type name of this X.509 extension.

The result is a byte string such as b"basicConstraints".

Returns The short type name.

Return type bytes

New in version 0.12.

NetscapeSPKI objects

class OpenSSL.crypto.NetscapeSPKI
A Netscape SPKI object.

__init__()
x.__init__(. . . ) initializes x; see help(type(x)) for signature

b64_encode()
Generate a base64 encoded representation of this SPKI object.

Returns The base64 encoded string.

Return type bytes

get_pubkey()
Get the public key of this certificate.

Returns The public key.

Return type PKey

set_pubkey(pkey)
Set the public key of the certificate

Parameters pkey – The public key

Returns None

sign(pkey, digest)
Sign the certificate request with this key and digest type.

Parameters
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• pkey (PKey) – The private key to sign with.

• digest (bytes) – The message digest to use.

Returns None

verify(key)
Verifies a signature on a certificate request.

Parameters key (PKey) – The public key that signature is supposedly from.

Returns True if the signature is correct.

Return type bool

Raises OpenSSL.crypto.Error – If the signature is invalid, or there was a problem veri-
fying the signature.

CRL objects

class OpenSSL.crypto.CRL
A certificate revocation list.

__init__()
x.__init__(. . . ) initializes x; see help(type(x)) for signature

add_revoked(revoked)
Add a revoked (by value not reference) to the CRL structure

This revocation will be added by value, not by reference. That means it’s okay to mutate it after adding: it
won’t affect this CRL.

Parameters revoked (Revoked) – The new revocation.

Returns None

export(cert, key, type=1, days=100, digest=<object object>)
Export the CRL as a string.

Parameters

• cert (X509) – The certificate used to sign the CRL.

• key (PKey) – The key used to sign the CRL.

• type (int) – The export format, either FILETYPE_PEM , FILETYPE_ASN1, or
FILETYPE_TEXT.

• days (int) – The number of days until the next update of this CRL.

• digest (bytes) – The name of the message digest to use (eg b"sha2566").

Return type bytes

classmethod from_cryptography(crypto_crl)
Construct based on a cryptography crypto_crl.

Parameters crypto_crl (cryptography.x509.CertificateRevocationList)
– A cryptography certificate revocation list

Return type CRL

New in version 17.1.0.
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get_issuer()
Get the CRL’s issuer.

New in version 16.1.0.

Return type X509Name

get_revoked()
Return the revocations in this certificate revocation list.

These revocations will be provided by value, not by reference. That means it’s okay to mutate them: it
won’t affect this CRL.

Returns The revocations in this CRL.

Return type tuple of Revocation

set_lastUpdate(when)
Set when the CRL was last updated.

The timestamp is formatted as an ASN.1 TIME:

YYYYMMDDhhmmssZ

New in version 16.1.0.

Parameters when (bytes) – A timestamp string.

Returns None

set_nextUpdate(when)
Set when the CRL will next be udpated.

The timestamp is formatted as an ASN.1 TIME:

YYYYMMDDhhmmssZ

New in version 16.1.0.

Parameters when (bytes) – A timestamp string.

Returns None

set_version(version)
Set the CRL version.

New in version 16.1.0.

Parameters version (int) – The version of the CRL.

Returns None

sign(issuer_cert, issuer_key, digest)
Sign the CRL.

Signing a CRL enables clients to associate the CRL itself with an issuer. Before a CRL is meaningful to
other OpenSSL functions, it must be signed by an issuer.

This method implicitly sets the issuer’s name based on the issuer certificate and private key used to sign
the CRL.

New in version 16.1.0.

Parameters

• issuer_cert (X509) – The issuer’s certificate.
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• issuer_key (PKey) – The issuer’s private key.

• digest (bytes) – The digest method to sign the CRL with.

to_cryptography()
Export as a cryptography CRL.

Return type cryptography.x509.CertificateRevocationList

New in version 17.1.0.

Revoked objects

class OpenSSL.crypto.Revoked
A certificate revocation.

all_reasons()
Return a list of all the supported reason strings.

This list is a copy; modifying it does not change the supported reason strings.

Returns A list of reason strings.

Return type list of bytes

get_reason()
Get the reason of this revocation.

Returns The reason, or None if there is none.

Return type bytes or NoneType

See also:

all_reasons(), which gives you a list of all supported reasons this method might return.

get_rev_date()
Get the revocation timestamp.

Returns The timestamp of the revocation, as ASN.1 TIME.

Return type bytes

get_serial()
Get the serial number.

The serial number is formatted as a hexadecimal number encoded in ASCII.

Returns The serial number.

Return type bytes

set_reason(reason)
Set the reason of this revocation.

If reason is None, delete the reason instead.

Parameters reason (bytes or NoneType) – The reason string.

Returns None

See also:

all_reasons(), which gives you a list of all supported reasons which you might pass to this method.

set_rev_date(when)
Set the revocation timestamp.
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Parameters when (bytes) – The timestamp of the revocation, as ASN.1 TIME.

Returns None

set_serial(hex_str)
Set the serial number.

The serial number is formatted as a hexadecimal number encoded in ASCII.

Parameters hex_str (bytes) – The new serial number.

Returns None

Exceptions

exception OpenSSL.crypto.Error
Generic exception used in the crypto module.

Digest names

Several of the functions and methods in this module take a digest name. These must be strings describing a digest
algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically). For example, b"sha256" or
b"sha384".

More information and a list of these digest names can be found in the EVP_DigestInit(3) man page of your
OpenSSL installation. This page can be found online for the latest version of OpenSSL: https://www.openssl.org/
docs/manmaster/man3/EVP_DigestInit.html

1.3.2 SSL — An interface to the SSL-specific parts of OpenSSL

This module handles things specific to SSL. There are two objects defined: Context, Connection.

OpenSSL.SSL.SSLv2_METHOD
OpenSSL.SSL.SSLv3_METHOD
OpenSSL.SSL.SSLv23_METHOD
OpenSSL.SSL.TLSv1_METHOD
OpenSSL.SSL.TLSv1_1_METHOD
OpenSSL.SSL.TLSv1_2_METHOD

These constants represent the different SSL methods to use when creating a context object. If the underlying
OpenSSL build is missing support for any of these protocols, constructing a Context using the corresponding
*_METHOD will raise an exception.

OpenSSL.SSL.VERIFY_NONE
OpenSSL.SSL.VERIFY_PEER
OpenSSL.SSL.VERIFY_FAIL_IF_NO_PEER_CERT

These constants represent the verification mode used by the Context object’s set_verify() method.

OpenSSL.SSL.FILETYPE_PEM
OpenSSL.SSL.FILETYPE_ASN1

File type constants used with the use_certificate_file() and use_privatekey_file() methods
of Context objects.

OpenSSL.SSL.OP_SINGLE_DH_USE
OpenSSL.SSL.OP_SINGLE_ECDH_USE

Constants used with set_options() of Context objects.
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When these options are used, a new key will always be created when using ephemeral (Elliptic curve) Diffie-
Hellman.

OpenSSL.SSL.OP_EPHEMERAL_RSA
Constant used with set_options() of Context objects.

When this option is used, ephemeral RSA keys will always be used when doing RSA operations.

OpenSSL.SSL.OP_NO_TICKET
Constant used with set_options() of Context objects.

When this option is used, the session ticket extension will not be used.

OpenSSL.SSL.OP_NO_COMPRESSION
Constant used with set_options() of Context objects.

When this option is used, compression will not be used.

OpenSSL.SSL.OP_NO_SSLv2
OpenSSL.SSL.OP_NO_SSLv3
OpenSSL.SSL.OP_NO_TLSv1
OpenSSL.SSL.OP_NO_TLSv1_1
OpenSSL.SSL.OP_NO_TLSv1_2

Constants used with set_options() of Context objects.

Each of these options disables one version of the SSL/TLS protocol. This is interesting if you’re using e.g.
SSLv23_METHOD to get an SSLv2-compatible handshake, but don’t want to use SSLv2. If the underlying
OpenSSL build is missing support for any of these protocols, the OP_NO_* constant may be undefined.

OpenSSL.SSL.SSLEAY_VERSION
OpenSSL.SSL.SSLEAY_CFLAGS
OpenSSL.SSL.SSLEAY_BUILT_ON
OpenSSL.SSL.SSLEAY_PLATFORM
OpenSSL.SSL.SSLEAY_DIR

Constants used with SSLeay_version() to specify what OpenSSL version information to retrieve. See the
man page for the SSLeay_version() C API for details.

OpenSSL.SSL.SESS_CACHE_OFF
OpenSSL.SSL.SESS_CACHE_CLIENT
OpenSSL.SSL.SESS_CACHE_SERVER
OpenSSL.SSL.SESS_CACHE_BOTH
OpenSSL.SSL.SESS_CACHE_NO_AUTO_CLEAR
OpenSSL.SSL.SESS_CACHE_NO_INTERNAL_LOOKUP
OpenSSL.SSL.SESS_CACHE_NO_INTERNAL_STORE
OpenSSL.SSL.SESS_CACHE_NO_INTERNAL

Constants used with Context.set_session_cache_mode() to specify the behavior of the session cache
and potential session reuse. See the man page for the SSL_CTX_set_session_cache_mode() C API for
details.

New in version 0.14.

OpenSSL.SSL.OPENSSL_VERSION_NUMBER
An integer giving the version number of the OpenSSL library used to build this version of pyOpenSSL. See the
man page for the SSLeay_version() C API for details.

OpenSSL.SSL.SSLeay_version(type)
Return a string describing the version of OpenSSL in use.

Parameters type – One of the SSLEAY_ constants defined in this module.
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OpenSSL.SSL.ContextType
See Context.

class OpenSSL.SSL.Context(method)
OpenSSL.SSL.Context instances define the parameters for setting up new SSL connections.

Parameters method – One of SSLv2_METHOD, SSLv3_METHOD, SSLv23_METHOD, or
TLSv1_METHOD.

class OpenSSL.SSL.Session
A class representing an SSL session. A session defines certain connection parameters which may be re-used to
speed up the setup of subsequent connections.

New in version 0.14.

OpenSSL.SSL.ConnectionType
See Connection.

class OpenSSL.SSL.Connection(context, socket)
A class representing SSL connections.

context should be an instance of Context and socket should be a socket1 object. socket may be None;
in this case, the Connection is created with a memory BIO: see the bio_read(), bio_write(), and
bio_shutdown() methods.

exception OpenSSL.SSL.Error
This exception is used as a base class for the other SSL-related exceptions, but may also be raised directly.

Whenever this exception is raised directly, it has a list of error messages from the OpenSSL error queue, where
each item is a tuple (lib, function, reason). Here lib, function and reason are all strings, describing where and
what the problem is. See err(3) for more information.

exception OpenSSL.SSL.ZeroReturnError
This exception matches the error return code SSL_ERROR_ZERO_RETURN, and is raised when the SSL Con-
nection has been closed. In SSL 3.0 and TLS 1.0, this only occurs if a closure alert has occurred in the protocol,
i.e. the connection has been closed cleanly. Note that this does not necessarily mean that the transport layer (e.g.
a socket) has been closed.

It may seem a little strange that this is an exception, but it does match an SSL_ERROR code, and is very
convenient.

exception OpenSSL.SSL.WantReadError
The operation did not complete; the same I/O method should be called again later, with the same arguments.
Any I/O method can lead to this since new handshakes can occur at any time.

The wanted read is for dirty data sent over the network, not the clean data inside the tunnel. For a socket
based SSL connection, read means data coming at us over the network. Until that read succeeds, the attempted
OpenSSL.SSL.Connection.recv(), OpenSSL.SSL.Connection.send(), or OpenSSL.SSL.
Connection.do_handshake() is prevented or incomplete. You probably want to select() on the
socket before trying again.

exception OpenSSL.SSL.WantWriteError
See WantReadError. The socket send buffer may be too full to write more data.

exception OpenSSL.SSL.WantX509LookupError
The operation did not complete because an application callback has asked to be called again. The I/O method
should be called again later, with the same arguments.

1 Actually, all that is required is an object that behaves like a socket, you could even use files, even though it’d be tricky to get the handshakes
right!
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Note: This won’t occur in this version, as there are no such callbacks in this version.

exception OpenSSL.SSL.SysCallError
The SysCallError occurs when there’s an I/O error and OpenSSL’s error queue does not contain any infor-
mation. This can mean two things: An error in the transport protocol, or an end of file that violates the protocol.
The parameter to the exception is always a pair (errnum, errstr).

Context objects

Context objects have the following methods:

class OpenSSL.SSL.Context(method)
OpenSSL.SSL.Context instances define the parameters for setting up new SSL connections.

Parameters method – One of SSLv2_METHOD, SSLv3_METHOD, SSLv23_METHOD, or
TLSv1_METHOD.

add_client_ca(certificate_authority)
Add the CA certificate to the list of preferred signers for this context.

The list of certificate authorities will be sent to the client when the server requests a client certificate.

Parameters certificate_authority – certificate authority’s X509 certificate.

Returns None

New in version 0.10.

add_extra_chain_cert(certobj)
Add certificate to chain

Parameters certobj – The X509 certificate object to add to the chain

Returns None

check_privatekey()
Check if the private key (loaded with use_privatekey()) matches the certificate (loaded with
use_certificate())

Returns None (raises Error if something’s wrong)

get_app_data()
Get the application data (supplied via set_app_data())

Returns The application data

get_cert_store()
Get the certificate store for the context. This can be used to add “trusted” certificates without using the
load_verify_locations() method.

Returns A X509Store object or None if it does not have one.

get_session_cache_mode()
Get the current session cache mode.

Returns The currently used cache mode.

New in version 0.14.

get_timeout()
Retrieve session timeout, as set by set_timeout(). The default is 300 seconds.
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Returns The session timeout

get_verify_depth()
Retrieve the Context object’s verify depth, as set by set_verify_depth().

Returns The verify depth

get_verify_mode()
Retrieve the Context object’s verify mode, as set by set_verify().

Returns The verify mode

load_client_ca(cafile)
Load the trusted certificates that will be sent to the client. Does not actually imply any of the certificates
are trusted; that must be configured separately.

Parameters cafile (bytes) – The path to a certificates file in PEM format.

Returns None

load_tmp_dh(dhfile)
Load parameters for Ephemeral Diffie-Hellman

Parameters dhfile – The file to load EDH parameters from (bytes or unicode).

Returns None

load_verify_locations(cafile, capath=None)
Let SSL know where we can find trusted certificates for the certificate chain. Note that the certificates have
to be in PEM format.

If capath is passed, it must be a directory prepared using the c_rehash tool included with OpenSSL.
Either, but not both, of pemfile or capath may be None.

Parameters

• cafile – In which file we can find the certificates (bytes or unicode).

• capath – In which directory we can find the certificates (bytes or unicode).

Returns None

set_alpn_protos(protos)
Specify the protocols that the client is prepared to speak after the TLS connection has been negotiated
using Application Layer Protocol Negotiation.

Parameters protos – A list of the protocols to be offered to the server. This list should
be a Python list of bytestrings representing the protocols to offer, e.g. [b'http/1.1',
b'spdy/2'].

set_alpn_select_callback(callback)
Specify a callback function that will be called on the server when a client offers protocols using ALPN.

Parameters callback – The callback function. It will be invoked with two arguments: the
Connection, and a list of offered protocols as bytestrings, e.g [b'http/1.1', b'spdy/
2']. It should return one of those bytestrings, the chosen protocol.

set_app_data(data)
Set the application data (will be returned from get_app_data())

Parameters data – Any Python object

Returns None
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set_cipher_list(cipher_list)
Set the list of ciphers to be used in this context.

See the OpenSSL manual for more information (e.g. ciphers(1)).

Parameters cipher_list (bytes) – An OpenSSL cipher string.

Returns None

set_client_ca_list(certificate_authorities)
Set the list of preferred client certificate signers for this server context.

This list of certificate authorities will be sent to the client when the server requests a client certificate.

Parameters certificate_authorities – a sequence of X509Names.

Returns None

New in version 0.10.

set_default_verify_paths()
Specify that the platform provided CA certificates are to be used for verification purposes. This method has
some caveats related to the binary wheels that cryptography (pyOpenSSL’s primary dependency) ships:

• macOS will only load certificates using this method if the user has the openssl@1.1 Homebrew
formula installed in the default location.

• Windows will not work.

• manylinux1 cryptography wheels will work on most common Linux distributions in pyOpenSSL
17.1.0 and above. pyOpenSSL detects the manylinux1 wheel and attempts to load roots via a fall-
back path.

Returns None

set_info_callback(callback)
Set the information callback to callback. This function will be called from time to time during SSL
handshakes.

Parameters callback – The Python callback to use. This should take three arguments: a Con-
nection object and two integers. The first integer specifies where in the SSL handshake the
function was called, and the other the return code from a (possibly failed) internal function
call.

Returns None

set_mode(mode)
Add modes via bitmask. Modes set before are not cleared! This method should be used with the MODE_*
constants.

Parameters mode – The mode to add.

Returns The new mode bitmask.

set_npn_advertise_callback(callback)
Specify a callback function that will be called when offering Next Protocol Negotiation as a server.

Parameters callback – The callback function. It will be invoked with one argument, the
Connection instance. It should return a list of bytestrings representing the advertised
protocols, like [b'http/1.1', b'spdy/2'].

New in version 0.15.
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set_npn_select_callback(callback)
Specify a callback function that will be called when a server offers Next Protocol Negotiation options.

Parameters callback – The callback function. It will be invoked with two arguments:
the Connection, and a list of offered protocols as bytestrings, e.g. [b'http/1.1',
b'spdy/2']. It should return one of those bytestrings, the chosen protocol.

New in version 0.15.

set_ocsp_client_callback(callback, data=None)
Set a callback to validate OCSP data stapled to the TLS handshake on the client side.

Parameters

• callback – The callback function. It will be invoked with three arguments: the Con-
nection, a bytestring containing the stapled OCSP assertion, and the optional arbitrary data
you have provided. The callback must return a boolean that indicates the result of validat-
ing the OCSP data: True if the OCSP data is valid and the certificate can be trusted, or
False if either the OCSP data is invalid or the certificate has been revoked.

• data – Some opaque data that will be passed into the callback function when called. This
can be used to avoid needing to do complex data lookups or to keep track of what context
is being used. This parameter is optional.

set_ocsp_server_callback(callback, data=None)
Set a callback to provide OCSP data to be stapled to the TLS handshake on the server side.

Parameters

• callback – The callback function. It will be invoked with two arguments: the Con-
nection, and the optional arbitrary data you have provided. The callback must return a
bytestring that contains the OCSP data to staple to the handshake. If no OCSP data is
available for this connection, return the empty bytestring.

• data – Some opaque data that will be passed into the callback function when called. This
can be used to avoid needing to do complex data lookups or to keep track of what context
is being used. This parameter is optional.

set_options(options)
Add options. Options set before are not cleared! This method should be used with the OP_* constants.

Parameters options – The options to add.

Returns The new option bitmask.

set_passwd_cb(callback, userdata=None)
Set the passphrase callback. This function will be called when a private key with a passphrase is loaded.

Parameters

• callback – The Python callback to use. This must accept three positional arguments.
First, an integer giving the maximum length of the passphrase it may return. If the returned
passphrase is longer than this, it will be truncated. Second, a boolean value which will be
true if the user should be prompted for the passphrase twice and the callback should verify
that the two values supplied are equal. Third, the value given as the userdata parameter to
set_passwd_cb(). The callback must return a byte string. If an error occurs, callback
should return a false value (e.g. an empty string).

• userdata – (optional) A Python object which will be given as argument to the callback

Returns None
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set_session_cache_mode(mode)
Set the behavior of the session cache used by all connections using this Context. The previously set mode
is returned. See SESS_CACHE_* for details about particular modes.

Parameters mode – One or more of the SESS_CACHE_* flags (combine using bitwise or)

Returns The previously set caching mode.

New in version 0.14.

set_session_id(buf)
Set the session id to buf within which a session can be reused for this Context object. This is needed when
doing session resumption, because there is no way for a stored session to know which Context object it is
associated with.

Parameters buf (bytes) – The session id.

Returns None

set_timeout(timeout)
Set the timeout for newly created sessions for this Context object to timeout. The default value is 300
seconds. See the OpenSSL manual for more information (e.g. SSL_CTX_set_timeout(3)).

Parameters timeout – The timeout in (whole) seconds

Returns The previous session timeout

set_tlsext_servername_callback(callback)
Specify a callback function to be called when clients specify a server name.

Parameters callback – The callback function. It will be invoked with one argument, the
Connection instance.

New in version 0.13.

set_tlsext_use_srtp(profiles)
Enable support for negotiating SRTP keying material.

Parameters profiles (bytes) – A colon delimited list of protection profile names, like
b'SRTP_AES128_CM_SHA1_80:SRTP_AES128_CM_SHA1_32'.

Returns None

set_tmp_ecdh(curve)
Select a curve to use for ECDHE key exchange.

Parameters curve – A curve object to use as returned by either OpenSSL.crypto.
get_elliptic_curve() or OpenSSL.crypto.get_elliptic_curves().

Returns None

set_verify(mode, callback)
et the verification flags for this Context object to mode and specify that callback should be used for verifi-
cation callbacks.

Parameters

• mode – The verify mode, this should be one of VERIFY_NONE and
VERIFY_PEER. If VERIFY_PEER is used, mode can be OR:ed with
VERIFY_FAIL_IF_NO_PEER_CERT and VERIFY_CLIENT_ONCE to further
control the behaviour.

• callback – The Python callback to use. This should take five arguments: A Connec-
tion object, an X509 object, and three integer variables, which are in turn potential error
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number, error depth and return code. callback should return True if verification passes and
False otherwise.

Returns None

See SSL_CTX_set_verify(3SSL) for further details.

set_verify_depth(depth)
Set the maximum depth for the certificate chain verification that shall be allowed for this Context object.

Parameters depth – An integer specifying the verify depth

Returns None

use_certificate(cert)
Load a certificate from a X509 object

Parameters cert – The X509 object

Returns None

use_certificate_chain_file(certfile)
Load a certificate chain from a file.

Parameters certfile – The name of the certificate chain file (bytes or unicode). Must
be PEM encoded.

Returns None

use_certificate_file(certfile, filetype=1)
Load a certificate from a file

Parameters

• certfile – The name of the certificate file (bytes or unicode).

• filetype – (optional) The encoding of the file, which is either FILETYPE_PEM or
FILETYPE_ASN1. The default is FILETYPE_PEM .

Returns None

use_privatekey(pkey)
Load a private key from a PKey object

Parameters pkey – The PKey object

Returns None

use_privatekey_file(keyfile, filetype=<object object>)
Load a private key from a file

Parameters

• keyfile – The name of the key file (bytes or unicode)

• filetype – (optional) The encoding of the file, which is either FILETYPE_PEM or
FILETYPE_ASN1. The default is FILETYPE_PEM .

Returns None

Session objects

Session objects have no methods.
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Connection objects

Connection objects have the following methods:

class OpenSSL.SSL.Connection(context, socket=None)

accept()
Call the accept() method of the underlying socket and set up SSL on the returned socket, using the
Context object supplied to this Connection object at creation.

Returns A (conn, addr) pair where conn is the new Connection object created, and address
is as returned by the socket’s accept().

bio_read(bufsiz)
If the Connection was created with a memory BIO, this method can be used to read bytes from the write
end of that memory BIO. Many Connection methods will add bytes which must be read in this manner or
the buffer will eventually fill up and the Connection will be able to take no further actions.

Parameters bufsiz – The maximum number of bytes to read

Returns The string read.

bio_shutdown()
If the Connection was created with a memory BIO, this method can be used to indicate that end of file has
been reached on the read end of that memory BIO.

Returns None

bio_write(buf)
If the Connection was created with a memory BIO, this method can be used to add bytes to the read end of
that memory BIO. The Connection can then read the bytes (for example, in response to a call to recv()).

Parameters buf – The string to put into the memory BIO.

Returns The number of bytes written

client_random()
Retrieve the random value used with the client hello message.

Returns A string representing the state

connect(addr)
Call the connect() method of the underlying socket and set up SSL on the socket, using the Context
object supplied to this Connection object at creation.

Parameters addr – A remote address

Returns What the socket’s connect method returns

connect_ex(addr)
Call the connect_ex()method of the underlying socket and set up SSL on the socket, using the Context
object supplied to this Connection object at creation. Note that if the connect_ex() method of the
socket doesn’t return 0, SSL won’t be initialized.

Parameters addr – A remove address

Returns What the socket’s connect_ex method returns

do_handshake()
Perform an SSL handshake (usually called after renegotiate() or one of set_accept_state()
or set_accept_state()). This can raise the same exceptions as send() and recv().

Returns None.
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export_keying_material(label, olen, context=None)
Obtain keying material for application use.

Param label - a disambiguating label string as described in RFC 5705

Param olen - the length of the exported key material in bytes

Param context - a per-association context value

Returns the exported key material bytes or None

get_alpn_proto_negotiated()
Get the protocol that was negotiated by ALPN.

Returns A bytestring of the protocol name. If no protocol has been negotiated yet, returns an
empty string.

get_app_data()
Retrieve application data as set by set_app_data().

Returns The application data

get_certificate()
Retrieve the local certificate (if any)

Returns The local certificate

get_cipher_bits()
Obtain the number of secret bits of the currently used cipher.

Returns The number of secret bits of the currently used cipher or None if no connection has
been established.

Return type int or NoneType

New in version 0.15.

get_cipher_list()
Retrieve the list of ciphers used by the Connection object.

Returns A list of native cipher strings.

get_cipher_name()
Obtain the name of the currently used cipher.

Returns The name of the currently used cipher or None if no connection has been established.

Return type unicode or NoneType

New in version 0.15.

get_cipher_version()
Obtain the protocol version of the currently used cipher.

Returns The protocol name of the currently used cipher or None if no connection has been
established.

Return type unicode or NoneType

New in version 0.15.

get_client_ca_list()
Get CAs whose certificates are suggested for client authentication.

Returns
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If this is a server connection, the list of certificate authorities that will be sent or has been
sent to the client, as controlled by this Connection’s Context.

If this is a client connection, the list will be empty until the connection with the server is
established.

New in version 0.10.

get_context()
Retrieve the Context object associated with this Connection.

get_finished()
Obtain the latest TLS Finished message that we sent.

Returns The contents of the message or None if the TLS handshake has not yet completed.

Return type bytes or NoneType

New in version 0.15.

get_next_proto_negotiated()
Get the protocol that was negotiated by NPN.

Returns A bytestring of the protocol name. If no protocol has been negotiated yet, returns an
empty string.

New in version 0.15.

get_peer_cert_chain()
Retrieve the other side’s certificate (if any)

Returns A list of X509 instances giving the peer’s certificate chain, or None if it does not have
one.

get_peer_certificate()
Retrieve the other side’s certificate (if any)

Returns The peer’s certificate

get_peer_finished()
Obtain the latest TLS Finished message that we received from the peer.

Returns The contents of the message or None if the TLS handshake has not yet completed.

Return type bytes or NoneType

New in version 0.15.

get_protocol_version()
Retrieve the SSL or TLS protocol version of the current connection.

Returns The TLS version of the current connection. For example, it will return 0x769 for
connections made over TLS version 1.

Return type int

get_protocol_version_name()
Retrieve the protocol version of the current connection.

Returns The TLS version of the current connection, for example the value for TLS 1.2 would
be TLSv1.2``or ``Unknown for connections that were not successfully established.

Return type unicode
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get_servername()
Retrieve the servername extension value if provided in the client hello message, or None if there wasn’t
one.

Returns A byte string giving the server name or None.

New in version 0.13.

get_session()
Returns the Session currently used.

Returns An instance of OpenSSL.SSL.Session or None if no session exists.

New in version 0.14.

get_shutdown()
Get the shutdown state of the Connection.

Returns The shutdown state, a bitvector of SENT_SHUTDOWN, RECEIVED_SHUTDOWN.

get_state_string()
Retrieve a verbose string detailing the state of the Connection.

Returns A string representing the state

Return type bytes

makefile(*args, **kwargs)
The makefile() method is not implemented, since there is no dup semantics for SSL connections

Raise NotImplementedError

master_key()
Retrieve the value of the master key for this session.

Returns A string representing the state

pending()
Get the number of bytes that can be safely read from the SSL buffer (not the underlying transport buffer).

Returns The number of bytes available in the receive buffer.

read(bufsiz, flags=None)
Receive data on the connection.

Parameters

• bufsiz – The maximum number of bytes to read

• flags – (optional) The only supported flag is MSG_PEEK, all other flags are ignored.

Returns The string read from the Connection

recv(bufsiz, flags=None)
Receive data on the connection.

Parameters

• bufsiz – The maximum number of bytes to read

• flags – (optional) The only supported flag is MSG_PEEK, all other flags are ignored.

Returns The string read from the Connection

recv_into(buffer, nbytes=None, flags=None)
Receive data on the connection and copy it directly into the provided buffer, rather than creating a new
string.
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Parameters

• buffer – The buffer to copy into.

• nbytes – (optional) The maximum number of bytes to read into the buffer. If not present,
defaults to the size of the buffer. If larger than the size of the buffer, is reduced to the size
of the buffer.

• flags – (optional) The only supported flag is MSG_PEEK, all other flags are ignored.

Returns The number of bytes read into the buffer.

renegotiate()
Renegotiate the session.

Returns True if the renegotiation can be started, False otherwise

Return type bool

renegotiate_pending()
Check if there’s a renegotiation in progress, it will return False once a renegotiation is finished.

Returns Whether there’s a renegotiation in progress

Return type bool

request_ocsp()
Called to request that the server sends stapled OCSP data, if available. If this is not called on the
client side then the server will not send OCSP data. Should be used in conjunction with Context.
set_ocsp_client_callback().

send(buf, flags=0)
Send data on the connection. NOTE: If you get one of the WantRead, WantWrite or WantX509Lookup
exceptions on this, you have to call the method again with the SAME buffer.

Parameters

• buf – The string, buffer or memoryview to send

• flags – (optional) Included for compatibility with the socket API, the value is ignored

Returns The number of bytes written

sendall(buf, flags=0)
Send “all” data on the connection. This calls send() repeatedly until all data is sent. If an error occurs, it’s
impossible to tell how much data has been sent.

Parameters

• buf – The string, buffer or memoryview to send

• flags – (optional) Included for compatibility with the socket API, the value is ignored

Returns The number of bytes written

server_random()
Retrieve the random value used with the server hello message.

Returns A string representing the state

set_accept_state()
Set the connection to work in server mode. The handshake will be handled automatically by read/write.

Returns None
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set_alpn_protos(protos)
Specify the client’s ALPN protocol list.

These protocols are offered to the server during protocol negotiation.

Parameters protos – A list of the protocols to be offered to the server. This list should
be a Python list of bytestrings representing the protocols to offer, e.g. [b'http/1.1',
b'spdy/2'].

set_app_data(data)
Set application data

Parameters data – The application data

Returns None

set_connect_state()
Set the connection to work in client mode. The handshake will be handled automatically by read/write.

Returns None

set_context(context)
Switch this connection to a new session context.

Parameters context – A Context instance giving the new session context to use.

set_session(session)
Set the session to be used when the TLS/SSL connection is established.

Parameters session – A Session instance representing the session to use.

Returns None

New in version 0.14.

set_shutdown(state)
Set the shutdown state of the Connection.

Parameters state – bitvector of SENT_SHUTDOWN, RECEIVED_SHUTDOWN.

Returns None

set_tlsext_host_name(name)
Set the value of the servername extension to send in the client hello.

Parameters name – A byte string giving the name.

New in version 0.13.

shutdown()
Send the shutdown message to the Connection.

Returns True if the shutdown completed successfully (i.e. both sides have sent closure alerts),
False otherwise (in which case you call recv() or send() when the connection becomes
readable/writeable).

sock_shutdown(*args, **kwargs)
Call the shutdown() method of the underlying socket. See shutdown(2).

Returns What the socket’s shutdown() method returns

total_renegotiations()
Find out the total number of renegotiations.

Returns The number of renegotiations.

Return type int
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want_read()
Checks if more data has to be read from the transport layer to complete an operation.

Returns True iff more data has to be read

want_write()
Checks if there is data to write to the transport layer to complete an operation.

Returns True iff there is data to write

write(buf, flags=0)
Send data on the connection. NOTE: If you get one of the WantRead, WantWrite or WantX509Lookup
exceptions on this, you have to call the method again with the SAME buffer.

Parameters

• buf – The string, buffer or memoryview to send

• flags – (optional) Included for compatibility with the socket API, the value is ignored

Returns The number of bytes written

1.4 Internals

We ran into three main problems developing this: Exceptions, callbacks and accessing socket methods. This is what
this chapter is about.

1.4.1 Exceptions

We realized early that most of the exceptions would be raised by the I/O functions of OpenSSL, so it
felt natural to mimic OpenSSL’s error code system, translating them into Python exceptions. This naturally
gives us the exceptions SSL.ZeroReturnError, SSL.WantReadError, SSL.WantWriteError, SSL.
WantX509LookupError and SSL.SysCallError.

For more information about this, see section SSL — An interface to the SSL-specific parts of OpenSSL.

1.4.2 Callbacks

Callbacks were more of a problem when pyOpenSSL was written in C. Having switched to being written in Python
using cffi, callbacks are now straightforward. The problems that originally existed no longer do (if you are interested
in the details you can find descriptions of those problems in the version control history for this document).

1.4.3 Accessing Socket Methods

We quickly saw the benefit of wrapping socket methods in the SSL.Connection class, for an easy transition
into using SSL. The problem here is that the socket module lacks a C API, and all the methods are declared
static. One approach would be to have OpenSSL as a submodule to the socket module, placing all the code in
socketmodule.c, but this is obviously not a good solution, since you might not want to import tonnes of extra
stuff you’re not going to use when importing the socket module. The other approach is to somehow get a pointer
to the method to be called, either the C function, or a callable Python object. This is not really a good solution either,
since there’s a lot of lookups involved.

The way it works is that you have to supply a socket- like transport object to the SSL.Connection. The only
requirement of this object is that it has a fileno() method that returns a file descriptor that’s valid at the C level
(i.e. you can use the system calls read and write). If you want to use the connect() or accept() methods of

1.4. Internals 41

https://docs.python.org/3/library/socket.html#module-socket
https://docs.python.org/3/library/socket.html#module-socket
https://docs.python.org/3/library/socket.html#module-socket


pyOpenSSL Documentation, Release 18.0.0

the SSL.Connection object, the transport object has to supply such methods too. Apart from them, any method
lookups in the SSL.Connection object that fail are passed on to the underlying transport object.

Future changes might be to allow Python-level transport objects, that instead of having fileno() methods, have
read() and write() methods, so more advanced features of Python can be used. This would probably entail some
sort of OpenSSL BIOs, but converting Python strings back and forth is expensive, so this shouldn’t be used unless
necessary. Other nice things would be to be able to pass in different transport objects for reading and writing, but
then the fileno() method of SSL.Connection becomes virtually useless. Also, should the method resolution
be used on the read-transport or the write-transport?

There are also examples in the pyOpenSSL repository that may help you getting started.

1.5 Meta

1.5.1 Backward Compatibility

pyOpenSSL has a very strong backward compatibility policy. Generally speaking, you shouldn’t ever be afraid of
updating.

If breaking changes are needed do be done, they are:

1. . . . announced in the Changelog.

2. . . . the old behavior raises a DeprecationWarning for a year.

3. . . . are done with another announcement in the Changelog.

1.5.2 Changelog

Versions are year-based with a strict backward-compatibility policy. The third digit is only for regressions.

18.0.0 (2018-05-16)

Backward-incompatible changes:

• The minimum cryptography version is now 2.2.1.

• Support for Python 2.6 has been dropped.

Deprecations:

none

Changes:

• Added Connection.get_certificate to retrieve the local certificate. #733

• OpenSSL.SSL.Connection now sets SSL_MODE_AUTO_RETRY by default. #753

• Added Context.set_tlsext_use_srtp to enable negotiation of SRTP keying material. #734
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17.5.0 (2017-11-30)

Backward-incompatible changes:

• The minimum cryptography version is now 2.1.4.

Deprecations:

none

Changes:

• Fixed a potential use-after-free in the verify callback and resolved a memory leak when loading PKCS12 files
with cacerts. #723

• Added Connection.export_keying_material for RFC 5705 compatible export of keying material.
#725

17.4.0 (2017-11-21)

Backward-incompatible changes:

none

Deprecations:

none

Changes:

• Re-added a subset of the OpenSSL.rand module. This subset allows conscientious users to reseed the
OpenSSL CSPRNG after fork. #708

• Corrected a use-after-free when reusing an issuer or subject from an X509 object after the underlying object has
been mutated. #709

17.3.0 (2017-09-14)

Backward-incompatible changes:

• Dropped support for Python 3.3. #677

• Removed the deprecated OpenSSL.rand module. This is being done ahead of our normal deprecation sched-
ule due to its lack of use and the fact that it was becoming a maintenance burden. os.urandom() should be
used instead. #675
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Deprecations:

• Deprecated OpenSSL.tsafe. #673

Changes:

• Fixed a memory leak in OpenSSL.crypto.CRL. #690

• Fixed a memory leak when verifying certificates with OpenSSL.crypto.X509StoreContext. #691

17.2.0 (2017-07-20)

Backward-incompatible changes:

none

Deprecations:

• Deprecated OpenSSL.rand - callers should use os.urandom() instead. #658

Changes:

• Fixed a bug causing Context.set_default_verify_paths() to not work with cryptography
manylinux1 wheels on Python 3.x. #665

• Fixed a crash with (EC)DSA signatures in some cases. #670

17.1.0 (2017-06-30)

Backward-incompatible changes:

• Removed the deprecated OpenSSL.rand.egd() function. Applications should prefer os.urandom() for
random number generation. #630

• Removed the deprecated default digest argument to OpenSSL.crypto.CRL.export(). Callers must
now always pass an explicit digest. #652

• Fixed a bug with ASN1_TIME casting in X509.set_notBefore(), X509.set_notAfter(),
Revoked.set_rev_date(), Revoked.set_nextUpdate(), and Revoked.
set_lastUpdate(). You must now pass times in the form YYYYMMDDhhmmssZ.
YYYYMMDDhhmmss+hhmm and YYYYMMDDhhmmss-hhmm will no longer work. #612

Deprecations:

• Deprecated the legacy “Type” aliases: ContextType, ConnectionType, PKeyType, X509NameType,
X509ExtensionType, X509ReqType, X509Type, X509StoreType, CRLType, PKCS7Type,
PKCS12Type, NetscapeSPKIType. The names without the “Type”-suffix should be used instead.
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Changes:

• Added OpenSSL.crypto.X509.from_cryptography() and OpenSSL.crypto.X509.
to_cryptography() for converting X.509 certificate to and from pyca/cryptography objects. #640

• Added OpenSSL.crypto.X509Req.from_cryptography(), OpenSSL.crypto.X509Req.
to_cryptography(), OpenSSL.crypto.CRL.from_cryptography(), and OpenSSL.
crypto.CRL.to_cryptography() for converting X.509 CSRs and CRLs to and from pyca/cryptography
objects. #645

• Added OpenSSL.debug that allows to get an overview of used library versions (including linked OpenSSL)
and other useful runtime information using python -m OpenSSL.debug. #620

• Added a fallback path to Context.set_default_verify_paths() to accommodate the upcoming re-
lease of cryptography manylinux1 wheels. #633

17.0.0 (2017-04-20)

Backward-incompatible changes:

none

Deprecations:

none

Changes:

• Added OpenSSL.X509Store.set_time() to set a custom verification time when verifying certificate
chains. #567

• Added a collection of functions for working with OCSP stapling. None of these functions make it pos-
sible to validate OCSP assertions, only to staple them into the handshake and to retrieve the stapled as-
sertion if provided. Users will need to write their own code to handle OCSP assertions. We specifically
added: Context.set_ocsp_server_callback(), Context.set_ocsp_client_callback(),
and Connection.request_ocsp(). #580

• Changed the SSL module’s memory allocation policy to avoid zeroing memory it allocates when unnecessary.
This reduces CPU usage and memory allocation time by an amount proportional to the size of the allocation.
For applications that process a lot of TLS data or that use very lage allocations this can provide considerable
performance improvements. #578

• Automatically set SSL_CTX_set_ecdh_auto() on OpenSSL.SSL.Context. #575

• Fix empty exceptions from OpenSSL.crypto.load_privatekey(). #581

16.2.0 (2016-10-15)

Backward-incompatible changes:

none
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Deprecations:

none

Changes:

• Fixed compatibility errors with OpenSSL 1.1.0.

• Fixed an issue that caused failures with subinterpreters and embedded Pythons. #552

16.1.0 (2016-08-26)

Backward-incompatible changes:

none

Deprecations:

• Dropped support for OpenSSL 0.9.8.

Changes:

• Fix memory leak in OpenSSL.crypto.dump_privatekey() with FILETYPE_TEXT. #496

• Enable use of CRL (and more) in verify context. #483

• OpenSSL.crypto.PKey can now be constructed from cryptography objects and also exported as such.
#439

• Support newer versions of cryptography which use opaque structs for OpenSSL 1.1.0 compatibility.

16.0.0 (2016-03-19)

This is the first release under full stewardship of PyCA. We have made many changes to make local development more
pleasing. The test suite now passes both on Linux and OS X with OpenSSL 0.9.8, 1.0.1, and 1.0.2. It has been moved
to pytest, all CI test runs are part of tox and the source code has been made fully flake8 compliant.

We hope to have lowered the barrier for contributions significantly but are open to hear about any remaining frustra-
tions.

Backward-incompatible changes:

• Python 3.2 support has been dropped. It never had significant real world usage and has been dropped by our
main dependency cryptography. Affected users should upgrade to Python 3.3 or later.
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Deprecations:

• The support for EGD has been removed. The only affected function OpenSSL.rand.egd() now uses os.
urandom() to seed the internal PRNG instead. Please see pyca/cryptography#1636 for more background
information on this decision. In accordance with our backward compatibility policy OpenSSL.rand.egd()
will be removed no sooner than a year from the release of 16.0.0.

Please note that you should use urandom for all your secure random number needs.

• Python 2.6 support has been deprecated. Our main dependency cryptography deprecated 2.6 in version
0.9 (2015-05-14) with no time table for actually dropping it. pyOpenSSL will drop Python 2.6 support once
cryptography does.

Changes:

• Fixed OpenSSL.SSL.Context.set_session_id, OpenSSL.SSL.Connection.renegotiate,
OpenSSL.SSL.Connection.renegotiate_pending, and OpenSSL.SSL.Context.
load_client_ca. They were lacking an implementation since 0.14. #422

• Fixed segmentation fault when using keys larger than 4096-bit to sign data. #428

• Fixed AttributeError when OpenSSL.SSL.Connection.get_app_data() was called before set-
ting any app data. #304

• Added OpenSSL.crypto.dump_publickey() to dump OpenSSL.crypto.PKey objects that repre-
sent public keys, and OpenSSL.crypto.load_publickey() to load such objects from serialized repre-
sentations. #382

• Added OpenSSL.crypto.dump_crl() to dump a certificate revocation list out to a string buffer. #368

• Added OpenSSL.SSL.Connection.get_state_string() using the OpenSSL binding
state_string_long. #358

• Added support for the socket.MSG_PEEK flag to OpenSSL.SSL.Connection.recv() and
OpenSSL.SSL.Connection.recv_into(). #294

• Added OpenSSL.SSL.Connection.get_protocol_version() and OpenSSL.SSL.
Connection.get_protocol_version_name(). #244

• Switched to utf8string mask by default. OpenSSL formerly defaulted to a T61String if there were UTF-
8 characters present. This was changed to default to UTF8String in the config around 2005, but the actual
code didn’t change it until late last year. This will default us to the setting that actually works. To revert this you
can call OpenSSL.crypto._lib.ASN1_STRING_set_default_mask_asc(b"default"). #234

Older Changelog Entries

The changes from before release 16.0.0 are preserved in the repository.
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