

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyOpenSSL 16.1.0 documentation

Welcome to pyOpenSSL’s documentation!

Release v16.1.0 (What’s new?).

pyOpenSSL is a rather thin wrapper around (a subset of) the OpenSSL library.
With thin wrapper we mean that a lot of the object methods do nothing more than
calling a corresponding function in the OpenSSL library.

Contents:

	Introduction
	History

	Development

	Contributing

	Installation
	Documentation

	OpenSSL — Python interface to OpenSSL
	crypto — Generic cryptographic module

	rand — An interface to the OpenSSL pseudo random number generator

	SSL — An interface to the SSL-specific parts of OpenSSL

	Internals
	Exceptions

	Callbacks

	Accessing Socket Methods

There are also examples in the pyOpenSSL repository [https://github.com/pyca/pyopenssl/tree/master/examples] that may help you getting started.

Meta

	Backward Compatibility

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyOpenSSL 16.1.0 documentation

Introduction

History

pyOpenSSL was originally created by Martin Sjögren because the SSL support in the standard library in Python 2.1 (the contemporary version of Python when the pyOpenSSL project was begun) was severely limited.
Other OpenSSL wrappers for Python at the time were also limited, though in different ways.

Later it was maintained by Jean-Paul Calderone [https://github.com/exarkun] who among other things managed to make pyOpenSSL a pure Python project which the current maintainers are very grateful for.

Over the time the standard library’s ssl module improved, never reaching the completeness of pyOpenSSL’s API coverage.
Despite PEP 466 [https://www.python.org/dev/peps/pep-0466/] many useful features remain Python 3-only and pyOpenSSL remains the only alternative for full-featured TLS code across all noteworthy Python versions from 2.6 through 3.5 and PyPy [http://pypy.org].

Development

pyOpenSSL is collaboratively developed by the Python Cryptography Authority (PyCA [https://github.com/pyca]) that also maintains the low-level bindings called cryptography [https://github.com/pyca/cryptography].

Current maintainer and release manager is Hynek Schlawack [https://hynek.me/].

Contributing

First of all, thank you for your interest in contributing to pyOpenSSL!
This project has no company backing its development therefore we’re dependent on help by the community.

Filing bug reports

Bug reports are very welcome.
Please file them on the GitHub issue tracker [https://github.com/pyca/pyopenssl/issues].
Good bug reports come with extensive descriptions of the error and how to reproduce it.
Reporters are strongly encouraged to include an short, self contained, correct example [http://www.sscce.org/].

Patches

All patches to pyOpenSSL should be submitted in the form of pull requests to the main pyOpenSSL repository, pyca/pyopenssl [https://github.com/pyca/pyopenssl].
These pull requests should satisfy the following properties:

Code

	The pull request should focus on one particular improvement to pyOpenSSL.
Create different pull requests for unrelated features or bugfixes.

	Code should follow PEP 8 [https://www.python.org/dev/peps/pep-0008/], especially in the “do what code around you does” sense.
Follow OpenSSL naming for callables whenever possible is preferred.

	New tests should use py.test-style assertions [https://pytest.org/latest/assert.html] instead of the old self.assertXYZ-style.

	Pull requests that introduce code must test all new behavior they introduce as well as for previously untested or poorly tested behavior that they touch.

	Pull requests are not allowed to break existing tests.
We usually don’t comment on pull requests that are breaking the CI because we consider them work in progress.
Please note that not having 100% code coverage for the code you wrote/touched also causes our CI to fail.

Documentation

When introducing new functionality, please remember to write documentation.

	New functions and methods should have a docstring describing what they do, what parameters they takes, what types those parameters are, and what they return.

def dump_publickey(type, pkey):
 """
 Dump a public key to a buffer.

 :param type: The file type (one of :data:`FILETYPE_PEM` or
 :data:`FILETYPE_ASN1`).
 :param PKey pkey: The PKey to dump.

 :return: The buffer with the dumped key in it.
 :rtype: bytes
 """

Don’t forget to add an .. auto(function|class|method):: statement to the relevant API document found in doc/api/ to actually add your function to the Sphinx documentation.

	Do not use :py: prefixes when cross-linking (Python is default).
Do not use the generic :data: or :obj:.
Instead use more specific types like :class:, :func: or :meth: if applicable.

	Pull requests that introduce features or fix bugs should note those changes in the CHANGELOG.rst [https://github.com/pyca/pyopenssl/blob/master/CHANGELOG.rst] file.
Please add new entries to the top of the current Changes section followed by a line linking to the relevant pull request:

- Added ``OpenSSL.crypto.some_func()`` to do something awesome.
 [`#1 <https://github.com/pyca/pyopenssl/pull/1>`_]

	Use semantic newlines [http://rhodesmill.org/brandon/2012/one-sentence-per-line/] in reStructuredText [http://sphinx-doc.org/rest.html] files (files ending in .rst).

Review

Finally, pull requests must be reviewed before merging.
This process mirrors the cryptography code review process [https://cryptography.io/en/latest/development/reviewing-patches/].
Everyone can perform reviews; this is a very valuable way to contribute, and is highly encouraged.

Pull requests are merged by members of PyCA [https://github.com/orgs/pyca/people].
They should, of course, keep all the requirements detailed in this document as well as the pyca/cryptography merge requirements in mind.

The final responsibility for the reviewing of merged code lies with the person merging it.
Since pyOpenSSL is a sensitive project from a security perspective, reviewers are strongly encouraged to take this review and merge process very seriously.

Finding Help

If you need any help with the contribution process, you’ll find us hanging out at #cryptography-dev on Freenode [https://freenode.net] IRC.
You can also ask questions on our mailing list [https://mail.python.org/mailman/listinfo/cryptography-dev].

Please note that this project is released with a Contributor Code of Conduct [https://github.com/pyca/pyopenssl/blob/master/CODE_OF_CONDUCT.rst].
By participating in this project you agree to abide by its terms.

Security

If you feel that you found a security-relevant bug that you would prefer to discuss in private, please send us a GPG [https://en.wikipedia.org/wiki/GNU_Privacy_Guard]-encrypted e-mail.

The maintainer can be reached at hs@ox.cx and his GPG key ID is 0xAE2536227F69F181 (Fingerprint: C2A0 4F86 ACE2 8ADC F817 DBB7 AE25 3622 7F69 F181).
Feel free to cross-check this information with Keybase [https://keybase.io/hynek].

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyOpenSSL 16.1.0 documentation

Installation

To install pyOpenSSL:

$ pip install pyopenssl

If you are installing in order to develop on pyOpenSSL, move to the root directory of a pyOpenSSL checkout, and run:

$ pip install -e .

Warning

As of 0.14, pyOpenSSL is a pure-Python project.
That means that if you encounter any kind of compiler errors, pyOpenSSL’s bugtracker is the wrong place to report them because we cannot help you.

Please take the time to read the errors and report them/ask help from the appropriate project.
The most likely culprit being cryptography [https://cryptography.io/] that contains OpenSSL’s library bindings.

Documentation

The documentation is written in reStructuredText and built using Sphinx:

$ cd doc
$ make html

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyOpenSSL 16.1.0 documentation

OpenSSL — Python interface to OpenSSL

This package provides a high-level interface to the functions in the
OpenSSL library. The following modules are defined:

	crypto — Generic cryptographic module
	Elliptic curves

	Serialization and deserialization

	Signing and verifying signatures

	X509 objects

	X509Name objects

	X509Req objects

	X509Store objects

	X509StoreContextError objects

	X509StoreContext objects

	X509StoreFlags constants

	PKey objects

	PKCS7 objects

	PKCS12 objects

	X509Extension objects

	NetscapeSPKI objects

	CRL objects

	Revoked objects

	Exceptions

	Digest names

	Backwards compatible type names

	rand — An interface to the OpenSSL pseudo random number generator

	SSL — An interface to the SSL-specific parts of OpenSSL
	Context objects

	Session objects

	Connection objects

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyOpenSSL 16.1.0 documentation

 	OpenSSL — Python interface to OpenSSL

crypto — Generic cryptographic module

Elliptic curves

	
OpenSSL.crypto.get_elliptic_curves()

	Return a set of objects representing the elliptic curves supported in the
OpenSSL build in use.

The curve objects have a unicode name attribute by which
they identify themselves.

The curve objects are useful as values for the argument accepted by
Context.set_tmp_ecdh() to specify which elliptical curve should be
used for ECDHE key exchange.

	
OpenSSL.crypto.get_elliptic_curve(name)

	Return a single curve object selected by name.

See get_elliptic_curves() for information about curve objects.

If the named curve is not supported then ValueError is raised.

Serialization and deserialization

The following serialization functions take one of these constants to determine the format.

	
OpenSSL.crypto.FILETYPE_PEM

	

FILETYPE_PEM serializes data to a Base64-encoded encoded representation of the underlying ASN.1 data structure. This representation includes delimiters that define what data structure is contained within the Base64-encoded block: for example, for a certificate, the delimiters are -----BEGIN CERTIFICATE----- and -----END CERTIFICATE-----.

	
OpenSSL.crypto.FILETYPE_ASN1

	

FILETYPE_ASN1 serializes data to the underlying ASN.1 data structure. The format used by FILETYPE_ASN1 is also sometimes referred to as DER.

Certificates

	
OpenSSL.crypto.dump_certificate(type, cert)

	Dump the certificate cert into a buffer string encoded with the type
type.

	
OpenSSL.crypto.load_certificate(type, buffer)

	Load a certificate (X509) from the string buffer encoded with the
type type.

Certificate signing requests

	
OpenSSL.crypto.dump_certificate_request(type, req)

	Dump the certificate request req into a buffer string encoded with the
type type.

	
OpenSSL.crypto.load_certificate_request(type, buffer)

	Load a certificate request (X509Req) from the string buffer encoded with
the type type.

Private keys

	
OpenSSL.crypto.dump_privatekey(type, pkey, cipher=None, passphrase=None)

	Dump the private key pkey into a buffer string encoded with the type
type. Optionally (if type is FILETYPE_PEM) encrypting it
using cipher and passphrase.

	Parameters:	
	type – The file type (one of FILETYPE_PEM,
FILETYPE_ASN1, or FILETYPE_TEXT)

	pkey (PKey) – The PKey to dump

	cipher – (optional) if encrypted PEM format, the cipher to use

	passphrase – (optional) if encrypted PEM format, this can be either
the passphrase to use, or a callback for providing the passphrase.

	Returns:	The buffer with the dumped key in

	Return type:	bytes

	
OpenSSL.crypto.load_privatekey(type, buffer[, passphrase])

	Load a private key (PKey) from the string buffer encoded with the type
type (must be one of FILETYPE_PEM and
FILETYPE_ASN1).

passphrase must be either a string or a callback for providing the pass
phrase.

Public keys

	
OpenSSL.crypto.dump_publickey(type, pkey)

	Dump a public key to a buffer.

	Parameters:	
	type – The file type (one of FILETYPE_PEM or
FILETYPE_ASN1).

	pkey (PKey) – The public key to dump

	Returns:	The buffer with the dumped key in it.

	Return type:	bytes

	
OpenSSL.crypto.load_publickey(type, buffer)

	Load a public key from a buffer.

	Parameters:	
	type – The file type (one of FILETYPE_PEM,
FILETYPE_ASN1).

	buffer (A Python string object, either unicode or bytestring.) – The buffer the key is stored in.

	Returns:	The PKey object.

	Return type:	PKey

Certificate revocation lists

	
OpenSSL.crypto.dump_crl(type, crl)

	Dump a certificate revocation list to a buffer.

	Parameters:	
	type – The file type (one of FILETYPE_PEM, FILETYPE_ASN1, or
FILETYPE_TEXT).

	crl (CRL) – The CRL to dump.

	Returns:	The buffer with the CRL.

	Return type:	bytes

	
OpenSSL.crypto.load_crl(type, buffer)

	Load Certificate Revocation List (CRL) data from a string buffer.
buffer encoded with the type type. The type type must either
FILETYPE_PEM or FILETYPE_ASN1).

	
OpenSSL.crypto.load_pkcs7_data(type, buffer)

	Load pkcs7 data from the string buffer encoded with the type
type. The type type must either FILETYPE_PEM or
FILETYPE_ASN1).

	
OpenSSL.crypto.load_pkcs12(buffer[, passphrase])

	Load pkcs12 data from the string buffer. If the pkcs12 structure is
encrypted, a passphrase must be included. The MAC is always
checked and thus required.

See also the man page for the C function PKCS12_parse().

Signing and verifying signatures

	
OpenSSL.crypto.sign(key, data, digest)

	Sign a data string using the given key and message digest.

key is a PKey instance. data is a str instance.
digest is a str naming a supported message digest type, for example
sha1.

New in version 0.11.

	
OpenSSL.crypto.verify(certificate, signature, data, digest)

	Verify the signature for a data string.

certificate is a X509 instance corresponding to the private
key which generated the signature. signature is a str instance giving
the signature itself. data is a str instance giving the data to which
the signature applies. digest is a str instance naming the message
digest type of the signature, for example sha1.

New in version 0.11.

X509 objects

	
class OpenSSL.crypto.X509

	An X.509 certificate.

	
add_extensions(extensions)

	Add extensions to the certificate.

	Parameters:	extensions (An iterable of X509Extension objects.) – The extensions to add.

	Returns:	None

	
digest(digest_name)

	Return the digest of the X509 object.

	Parameters:	digest_name (bytes) – The name of the digest algorithm to use.

	Returns:	The digest of the object, formatted as
b":"-delimited hex pairs.

	Return type:	bytes

	
get_extension(index)

	Get a specific extension of the certificate by index.

Extensions on a certificate are kept in order. The index
parameter selects which extension will be returned.

	Parameters:	index (int) – The index of the extension to retrieve.

	Returns:	The extension at the specified index.

	Return type:	X509Extension

	Raises:	IndexError – If the extension index was out of bounds.

New in version 0.12.

	
get_extension_count()

	Get the number of extensions on this certificate.

	Returns:	The number of extensions.

	Return type:	int

New in version 0.12.

	
get_issuer()

	Return the issuer of this certificate.

This creates a new X509Name that wraps the underlying issuer
name field on the certificate. Modifying it will modify the underlying
certificate, and will have the effect of modifying any other
X509Name that refers to this issuer.

	Returns:	The issuer of this certificate.

	Return type:	X509Name

	
get_notAfter()

	Get the timestamp at which the certificate stops being valid.

The timestamp is formatted as an ASN.1 GENERALIZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

	Returns:	A timestamp string, or None if there is none.

	Return type:	bytes or NoneType

	
get_notBefore()

	Get the timestamp at which the certificate starts being valid.

The timestamp is formatted as an ASN.1 GENERALIZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

	Returns:	A timestamp string, or None if there is none.

	Return type:	bytes or NoneType

	
get_pubkey()

	Get the public key of the certificate.

	Returns:	The public key.

	Return type:	PKey

	
get_serial_number()

	Return the serial number of this certificate.

	Returns:	The serial number.

	Return type:	int

	
get_signature_algorithm()

	Return the signature algorithm used in the certificate.

	Returns:	The name of the algorithm.

	Return type:	bytes

	Raises:	ValueError – If the signature algorithm is undefined.

New in version 0.13.

	
get_subject()

	Return the subject of this certificate.

This creates a new X509Name that wraps the underlying subject
name field on the certificate. Modifying it will modify the underlying
certificate, and will have the effect of modifying any other
X509Name that refers to this subject.

	Returns:	The subject of this certificate.

	Return type:	X509Name

	
get_version()

	Return the version number of the certificate.

	Returns:	The version number of the certificate.

	Return type:	int

	
gmtime_adj_notAfter(amount)

	Adjust the time stamp on which the certificate stops being valid.

	Parameters:	amount (int) – The number of seconds by which to adjust the
timestamp.

	Returns:	None

	
gmtime_adj_notBefore(amount)

	Adjust the timestamp on which the certificate starts being valid.

	Parameters:	amount – The number of seconds by which to adjust the timestamp.

	Returns:	None

	
has_expired()

	Check whether the certificate has expired.

	Returns:	True if the certificate has expired, False otherwise.

	Return type:	bool

	
set_issuer(issuer)

	Set the issuer of this certificate.

	Parameters:	issuer (X509Name) – The issuer.

	Returns:	None

	
set_notAfter(when)

	Set the timestamp at which the certificate stops being valid.

The timestamp is formatted as an ASN.1 GENERALIZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

	Parameters:	when (bytes) – A timestamp string.

	Returns:	None

	
set_notBefore(when)

	Set the timestamp at which the certificate starts being valid.

The timestamp is formatted as an ASN.1 GENERALIZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

	Parameters:	when (bytes) – A timestamp string.

	Returns:	None

	
set_pubkey(pkey)

	Set the public key of the certificate.

	Parameters:	pkey (PKey) – The public key.

	Returns:	None

	
set_serial_number(serial)

	Set the serial number of the certificate.

	Parameters:	serial (int) – The new serial number.

	Returns:	:py:data`None`

	
set_subject(subject)

	Set the subject of this certificate.

	Parameters:	subject (X509Name) – The subject.

	Returns:	None

	
set_version(version)

	Set the version number of the certificate.

	Parameters:	version (int) – The version number of the certificate.

	Returns:	None

	
sign(pkey, digest)

	Sign the certificate with this key and digest type.

	Parameters:	
	pkey (PKey) – The key to sign with.

	digest (bytes) – The name of the message digest to use.

	Returns:	None

	
subject_name_hash()

	Return the hash of the X509 subject.

	Returns:	The hash of the subject.

	Return type:	bytes

X509Name objects

	
class OpenSSL.crypto.X509Name(name)

	An X.509 Distinguished Name.

	Variables:	
	countryName – The country of the entity.

	C – Alias for countryName.

	stateOrProvinceName – The state or province of the entity.

	ST – Alias for stateOrProvinceName.

	localityName – The locality of the entity.

	L – Alias for localityName.

	organizationName – The organization name of the entity.

	O – Alias for organizationName.

	organizationalUnitName – The organizational unit of the entity.

	OU – Alias for organizationalUnitName

	commonName – The common name of the entity.

	CN – Alias for commonName.

	emailAddress – The e-mail address of the entity.

	
__init__(name)

	Create a new X509Name, copying the given X509Name instance.

	Parameters:	name (X509Name) – The name to copy.

	
der()

	Return the DER encoding of this name.

	Returns:	The DER encoded form of this name.

	Return type:	bytes

	
get_components()

	Returns the components of this name, as a sequence of 2-tuples.

	Returns:	The components of this name.

	Return type:	list of name, value tuples.

	
hash()

	Return an integer representation of the first four bytes of the
MD5 digest of the DER representation of the name.

This is the Python equivalent of OpenSSL’s X509_NAME_hash.

	Returns:	The (integer) hash of this name.

	Return type:	int

X509Req objects

	
class OpenSSL.crypto.X509Req

	An X.509 certificate signing requests.

	
add_extensions(extensions)

	Add extensions to the certificate signing request.

	Parameters:	extensions (iterable of X509Extension) – The X.509 extensions to add.

	Returns:	None

	
get_extensions()

	Get X.509 extensions in the certificate signing request.

	Returns:	The X.509 extensions in this request.

	Return type:	list of X509Extension objects.

New in version 0.15.

	
get_pubkey()

	Get the public key of the certificate signing request.

	Returns:	The public key.

	Return type:	PKey

	
get_subject()

	Return the subject of this certificate signing request.

This creates a new X509Name that wraps the underlying subject
name field on the certificate signing request. Modifying it will modify
the underlying signing request, and will have the effect of modifying
any other X509Name that refers to this subject.

	Returns:	The subject of this certificate signing request.

	Return type:	X509Name

	
get_version()

	Get the version subfield (RFC 2459, section 4.1.2.1) of the certificate
request.

	Returns:	The value of the version subfield.

	Return type:	int

	
set_pubkey(pkey)

	Set the public key of the certificate signing request.

	Parameters:	pkey (PKey) – The public key to use.

	Returns:	None

	
set_version(version)

	Set the version subfield (RFC 2459, section 4.1.2.1) of the certificate
request.

	Parameters:	version (int) – The version number.

	Returns:	None

	
sign(pkey, digest)

	Sign the certificate signing request with this key and digest type.

	Parameters:	
	pkey (PKey) – The key pair to sign with.

	digest (bytes) – The name of the message digest to use for the signature,
e.g. b"sha1".

	Returns:	None

	
verify(pkey)

	Verifies the signature on this certificate signing request.

	Parameters:	key (PKey) – A public key.

	Returns:	True if the signature is correct.

	Return type:	bool

	Raises:	Error – If the signature is invalid or there is a
problem verifying the signature.

X509Store objects

	
class OpenSSL.crypto.X509Store

	An X.509 store.

An X.509 store is used to describe a context in which to verify a
certificate. A description of a context may include a set of certificates
to trust, a set of certificate revocation lists, verification flags and
more.

An X.509 store, being only a description, cannot be used by itself to
verify a certificate. To carry out the actual verification process, see
X509StoreContext.

	
add_cert(cert)

	Adds a trusted certificate to this store.

Adding a certificate with this method adds this certificate as a
trusted certificate.

	Parameters:	cert (X509) – The certificate to add to this store.

	Raises:	
	TypeError – If the certificate is not an X509.

	Error – If OpenSSL was unhappy with your certificate.

	Returns:	None if the certificate was added successfully.

	
add_crl(crl)

	Add a certificate revocation list to this store.

The certificate revocation lists added to a store will only be used if
the associated flags are configured to check certificate revocation
lists.

New in version 16.1.0.

	Parameters:	crl (CRL) – The certificate revocation list to add to this store.

	Returns:	None if the certificate revocation list was added
successfully.

	
set_flags(flags)

	Set verification flags to this store.

Verification flags can be combined by oring them together.

Note

Setting a verification flag sometimes requires clients to add
additional information to the store, otherwise a suitable error will
be raised.

For example, in setting flags to enable CRL checking a
suitable CRL must be added to the store otherwise an error will be
raised.

New in version 16.1.0.

	Parameters:	flags (int) – The verification flags to set on this store.
See X509StoreFlags for available constants.

	Returns:	None if the verification flags were successfully set.

X509StoreContextError objects

	
class OpenSSL.crypto.X509StoreContextError(message, certificate)

	An exception raised when an error occurred while verifying a certificate
using OpenSSL.X509StoreContext.verify_certificate.

	Variables:	certificate – The certificate which caused verificate failure.

X509StoreContext objects

	
class OpenSSL.crypto.X509StoreContext(store, certificate)

	An X.509 store context.

An X.509 store context is used to carry out the actual verification process
of a certificate in a described context. For describing such a context, see
X509Store.

	Variables:	
	_store_ctx – The underlying X509_STORE_CTX structure used by this
instance. It is dynamically allocated and automatically garbage
collected.

	_store – See the store __init__ parameter.

	_cert – See the certificate __init__ parameter.

	Parameters:	
	store (X509Store) – The certificates which will be trusted for the
purposes of any verifications.

	certificate (X509) – The certificate to be verified.

	
set_store(store)

	Set the context’s X.509 store.

New in version 0.15.

	Parameters:	store (X509Store) – The store description which will be used for
the purposes of any future verifications.

	
verify_certificate()

	Verify a certificate in a context.

New in version 0.15.

	Raises:	X509StoreContextError – If an error occurred when validating a
certificate in the context. Sets certificate attribute to
indicate which certificate caused the error.

X509StoreFlags constants

	
class OpenSSL.crypto.X509StoreFlags

	Flags for X509 verification, used to change the behavior of
X509Store.

See OpenSSL Verification Flags [https://www.openssl.org/docs/manmaster/crypto/X509_VERIFY_PARAM_set_flags.html] for details.

	
CRL_CHECK

	

	
CRL_CHECK_ALL

	

	
IGNORE_CRITICAL

	

	
X509_STRICT

	

	
ALLOW_PROXY_CERTS

	

	
POLICY_CHECK

	

	
EXPLICIT_POLICY

	

	
INHIBIT_MAP

	

	
NOTIFY_POLICY

	

	
CHECK_SS_SIGNATURE

	

	
CB_ISSUER_CHECK

	

PKey objects

	
class OpenSSL.crypto.PKey

	A class representing an DSA or RSA public key or key pair.

	
bits()

	Returns the number of bits of the key

	Returns:	The number of bits of the key.

	
check()

	Check the consistency of an RSA private key.

This is the Python equivalent of OpenSSL’s RSA_check_key.

	Returns:	True if key is consistent.

	Raises:	
	Error – if the key is inconsistent.

	TypeError – if the key is of a type which cannot be checked.
Only RSA keys can currently be checked.

	
classmethod from_cryptography_key(crypto_key)

	Construct based on a cryptography crypto_key.

	Parameters:	crypto_key (One of cryptography‘s key interfaces [https://cryptography.io/en/latest/hazmat/primitives/asymmetric/rsa/#key-interfaces].) – A cryptography key.

	Return type:	PKey

New in version 16.1.0.

	
generate_key(type, bits)

	Generate a key pair of the given type, with the given number of bits.

This generates a key “into” the this object.

	Parameters:	
	type (TYPE_RSA or TYPE_DSA) – The key type.

	bits (int >= 0) – The number of bits.

	Raises:	
	TypeError – If type or bits isn’t
of the appropriate type.

	ValueError – If the number of bits isn’t an integer of
the appropriate size.

	Returns:	None

	
to_cryptography_key()

	Export as a cryptography key.

	Return type:	One of cryptography‘s key interfaces [https://cryptography.io/en/latest/hazmat/primitives/asymmetric/rsa/#key-interfaces].

New in version 16.1.0.

	
type()

	Returns the type of the key

	Returns:	The type of the key.

	
OpenSSL.crypto.TYPE_RSA

	
OpenSSL.crypto.TYPE_DSA

	Key type constants.

PKCS7 objects

PKCS7 objects have the following methods:

	
PKCS7.type_is_signed()

	FIXME

	
PKCS7.type_is_enveloped()

	FIXME

	
PKCS7.type_is_signedAndEnveloped()

	FIXME

	
PKCS7.type_is_data()

	FIXME

	
PKCS7.get_type_name()

	Get the type name of the PKCS7.

PKCS12 objects

	
class OpenSSL.crypto.PKCS12

	A PKCS #12 archive.

	
export(passphrase=None, iter=2048, maciter=1)

	Dump a PKCS12 object as a string.

For more information, see the PKCS12_create() man page.

	Parameters:	
	passphrase (bytes) – The passphrase used to encrypt the structure. Unlike
some other passphrase arguments, this must be a string, not a
callback.

	iter (int) – Number of times to repeat the encryption step.

	maciter (int) – Number of times to repeat the MAC step.

	Returns:	The string representation of the PKCS #12 structure.

	Return type:	

	
get_ca_certificates()

	Get the CA certificates in the PKCS #12 structure.

	Returns:	A tuple with the CA certificates in the chain, or
None if there are none.

	Return type:	tuple of X509 or None

	
get_certificate()

	Get the certificate in the PKCS #12 structure.

	Returns:	The certificate, or None if there is none.

	Return type:	X509 or None

	
get_friendlyname()

	Get the friendly name in the PKCS# 12 structure.

	Returns:	The friendly name, or None if there is none.

	Return type:	bytes or None

	
get_privatekey()

	Get the private key in the PKCS #12 structure.

	Returns:	The private key, or None if there is none.

	Return type:	PKey

	
set_ca_certificates(cacerts)

	Replace or set the CA certificates within the PKCS12 object.

	Parameters:	cacerts (An iterable of X509 or None) – The new CA certificates, or None to unset
them.

	Returns:	None

	
set_certificate(cert)

	Set the certificate in the PKCS #12 structure.

	Parameters:	cert (X509 or None) – The new certificate, or None to unset it.

	Returns:	None

	
set_friendlyname(name)

	Set the friendly name in the PKCS #12 structure.

	Parameters:	name (bytes or None) – The new friendly name, or None to unset.

	Returns:	None

	
set_privatekey(pkey)

	Set the certificate portion of the PKCS #12 structure.

	Parameters:	pkey (PKey or None) – The new private key, or None to unset it.

	Returns:	None

X509Extension objects

	
class OpenSSL.crypto.X509Extension(type_name, critical, value, subject=None, issuer=None)

	An X.509 v3 certificate extension.

	
__init__(type_name, critical, value, subject=None, issuer=None)

	Initializes an X509 extension.

	Parameters:	
	type_name (bytes) – The name of the type of extension [https://openssl.org/docs/manmaster/apps/x509v3_config.html#STANDARD-EXTENSIONS] to create.

	critical (bool) – A flag indicating whether this is a critical
extension.

	value (bytes) – The value of the extension.

	subject (X509) – Optional X509 certificate to use as subject.

	issuer (X509) – Optional X509 certificate to use as issuer.

	
__str__()

	

	Returns:	a nice text representation of the extension

	
get_critical()

	Returns the critical field of this X.509 extension.

	Returns:	The critical field.

	
get_data()

	Returns the data of the X509 extension, encoded as ASN.1.

	Returns:	The ASN.1 encoded data of this X509 extension.

	Return type:	bytes

New in version 0.12.

	
get_short_name()

	Returns the short type name of this X.509 extension.

The result is a byte string such as b"basicConstraints".

	Returns:	The short type name.

	Return type:	bytes

New in version 0.12.

NetscapeSPKI objects

	
class OpenSSL.crypto.NetscapeSPKI

	A Netscape SPKI object.

	
b64_encode()

	Generate a base64 encoded representation of this SPKI object.

	Returns:	The base64 encoded string.

	Return type:	bytes

	
get_pubkey()

	Get the public key of this certificate.

	Returns:	The public key.

	Return type:	PKey

	
set_pubkey(pkey)

	Set the public key of the certificate

	Parameters:	pkey – The public key

	Returns:	None

	
sign(pkey, digest)

	Sign the certificate request with this key and digest type.

	Parameters:	
	pkey (PKey) – The private key to sign with.

	digest (bytes) – The message digest to use.

	Returns:	None

	
verify(key)

	Verifies a signature on a certificate request.

	Parameters:	key – The public key that signature is supposedly from.

	Returns:	True if the signature is correct.

	Return type:	bool

	Raises:	Error – If the signature is invalid, or there was a problem
verifying the signature.

CRL objects

	
class OpenSSL.crypto.CRL

	A certificate revocation list.

	
add_revoked(revoked)

	Add a revoked (by value not reference) to the CRL structure

This revocation will be added by value, not by reference. That
means it’s okay to mutate it after adding: it won’t affect
this CRL.

	Parameters:	revoked (Revoked) – The new revocation.

	Returns:	None

	
export(cert, key, type=1, days=100, digest=<object object>)

	Export the CRL as a string.

	Parameters:	
	cert (X509) – The certificate used to sign the CRL.

	key (PKey) – The key used to sign the CRL.

	type (int) – The export format, either FILETYPE_PEM,
FILETYPE_ASN1, or FILETYPE_TEXT.

	days (int) – The number of days until the next update of this CRL.

	digest (bytes) – The name of the message digest to use (eg
b"sha1").

	Return type:	bytes

	
get_issuer()

	Get the CRL’s issuer.

New in version 16.1.0.

	Return type:	X509Name

	
get_revoked()

	Return the revocations in this certificate revocation list.

These revocations will be provided by value, not by reference.
That means it’s okay to mutate them: it won’t affect this CRL.

	Returns:	The revocations in this CRL.

	Return type:	tuple of Revocation

	
set_lastUpdate(when)

	Set when the CRL was last updated.

The timestamp is formatted as an ASN.1 GENERALIZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

New in version 16.1.0.

	Parameters:	when (bytes) – A timestamp string.

	Returns:	None

	
set_nextUpdate(when)

	Set when the CRL will next be udpated.

The timestamp is formatted as an ASN.1 GENERALIZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

New in version 16.1.0.

	Parameters:	when (bytes) – A timestamp string.

	Returns:	None

	
set_version(version)

	Set the CRL version.

New in version 16.1.0.

	Parameters:	version (int) – The version of the CRL.

	Returns:	None

	
sign(issuer_cert, issuer_key, digest)

	Sign the CRL.

Signing a CRL enables clients to associate the CRL itself with an
issuer. Before a CRL is meaningful to other OpenSSL functions, it must
be signed by an issuer.

This method implicitly sets the issuer’s name based on the issuer
certificate and private key used to sign the CRL.

New in version 16.1.0.

	Parameters:	
	issuer_cert (X509) – The issuer’s certificate.

	issuer_key (PKey) – The issuer’s private key.

	digest (bytes) – The digest method to sign the CRL with.

Revoked objects

	
class OpenSSL.crypto.Revoked

	A certificate revocation.

	
all_reasons()

	Return a list of all the supported reason strings.

This list is a copy; modifying it does not change the supported reason
strings.

	Returns:	A list of reason strings.

	Return type:	list of bytes

	
get_reason()

	Get the reason of this revocation.

	Returns:	The reason, or None if there is none.

	Return type:	bytes or NoneType

See also

all_reasons(), which gives you a list of all supported
reasons this method might return.

	
get_rev_date()

	Get the revocation timestamp.

	Returns:	The timestamp of the revocation, as ASN.1 GENERALIZEDTIME.

	Return type:	bytes

	
get_serial()

	Get the serial number.

The serial number is formatted as a hexadecimal number encoded in
ASCII.

	Returns:	The serial number.

	Return type:	bytes

	
set_reason(reason)

	Set the reason of this revocation.

If reason is None, delete the reason instead.

	Parameters:	reason (bytes or NoneType) – The reason string.

	Returns:	None

See also

all_reasons(), which gives you a list of all supported
reasons which you might pass to this method.

	
set_rev_date(when)

	Set the revocation timestamp.

	Parameters:	when (bytes) – The timestamp of the revocation,
as ASN.1 GENERALIZEDTIME.

	Returns:	None

	
set_serial(hex_str)

	Set the serial number.

The serial number is formatted as a hexadecimal number encoded in
ASCII.

	Parameters:	hex_str (bytes) – The new serial number.

	Returns:	None

Exceptions

	
exception OpenSSL.crypto.Error

	Generic exception used in the crypto module.

Digest names

Several of the functions and methods in this module take a digest name.
These must be strings describing a digest algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically).
For example, b"md5" or b"sha1".

More information and a list of these digest names can be found in the EVP_DigestInit(3) man page of your OpenSSL installation.
This page can be found online for the latest version of OpenSSL:
https://www.openssl.org/docs/manmaster/crypto/EVP_DigestInit.html

Backwards compatible type names

When pyOpenSSL was originally written, the most current version of Python was 2.1.
It made a distinction between classes and types.
None of the versions of Python currently supported by pyOpenSSL still enforce that distinction:
the type of an instance of an X509 object is now simply X509.
Originally, the type would have been X509Type.
These days, X509Type and X509 are literally the same object.
pyOpenSSL maintains these old names for backwards compatibility.

Here’s a table of these backwards-compatible names:

	Type name
	Backwards-compatible name

	X509
	X509Type

	X509Name
	X509NameType

	X509Req
	X509ReqType

	X509Store
	X509StoreType

	X509Extension
	X509ExtensionType

	PKey
	PKeyType

	PKCS7
	PKCS7Type

	PKCS12
	PKCS12Type

	NetscapeSPKI
	NetscapeSPKIType

	CRL
	CRLType

Some objects, such as Revoked, don’t have Type equivalents, because they were added after the restriction had been lifted.

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyOpenSSL 16.1.0 documentation

 	OpenSSL — Python interface to OpenSSL

rand — An interface to the OpenSSL pseudo random number generator

Warning

Functions from this module shouldn’t be used.
Use urandom [http://sockpuppet.org/blog/2014/02/25/safely-generate-random-numbers/] instead.

This module handles the OpenSSL pseudo random number generator (PRNG) and declares the following:

	
OpenSSL.rand.add(buffer, entropy)

	Mix bytes from string into the PRNG state.

The entropy argument is (the lower bound of) an estimate of how much
randomness is contained in string, measured in bytes.

For more information, see e.g. RFC 1750 [https://tools.ietf.org/html/rfc1750.html].

	Parameters:	
	buffer – Buffer with random data.

	entropy – The entropy (in bytes) measurement of the buffer.

	Returns:	None

	
OpenSSL.rand.bytes(num_bytes)

	Get some random bytes from the PRNG as a string.

This is a wrapper for the C function RAND_bytes.

	Parameters:	num_bytes – The number of bytes to fetch.

	Returns:	A string of random bytes.

	
OpenSSL.rand.cleanup()

	Erase the memory used by the PRNG.

This is a wrapper for the C function RAND_cleanup.

	Returns:	None

	
OpenSSL.rand.egd(path[, bytes])

	Query the system random source and seed the PRNG.

Does not actually query the EGD.

Deprecated since version 16.0.0: EGD was only necessary for some commercial UNIX systems that all
reached their ends of life more than a decade ago. See
pyca/cryptography#1636 [https://github.com/pyca/cryptography/pull/1636].

	Parameters:	
	path – Ignored.

	bytes – (optional) The number of bytes to read, default is 255.

	Returns:	len(bytes) or 255 if not specified.

	
OpenSSL.rand.load_file(filename[, bytes])

	Read maxbytes of data from filename and seed the PRNG with it.

Read the whole file if maxbytes is not specified or negative.

	Parameters:	
	filename – The file to read data from (bytes or unicode).

	maxbytes – (optional) The number of bytes to read. Default is to
read the entire file.

	Returns:	The number of bytes read

	
OpenSSL.rand.seed(buffer)

	Equivalent to calling add() with entropy as the length of buffer.

	Parameters:	buffer – Buffer with random data

	Returns:	None

	
OpenSSL.rand.status()

	Check whether the PRNG has been seeded with enough data.

	Returns:	True if the PRNG is seeded enough, False otherwise.

	
OpenSSL.rand.write_file(filename)

	Write a number of random bytes (currently 1024) to the file path. This
file can then be used with load_file() to seed the PRNG again.

	Parameters:	filename – The file to write data to (bytes or unicode).

	Returns:	The number of bytes written.

	
OpenSSL.rand.screen()

	Add the current contents of the screen to the PRNG state.

Availability: Windows.

	Returns:	None

	
exception OpenSSL.rand.Error

	An error occurred in an OpenSSL.rand API.

If the current RAND method supports any errors, this is raised when needed.
The default method does not raise this when the entropy pool is depleted.

Whenever this exception is raised directly, it has a list of error messages
from the OpenSSL error queue, where each item is a tuple (lib, function,
reason). Here lib, function and reason are all strings, describing
where and what the problem is.

See err(3) for more information.

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyOpenSSL 16.1.0 documentation

 	OpenSSL — Python interface to OpenSSL

SSL — An interface to the SSL-specific parts of OpenSSL

This module handles things specific to SSL. There are two objects defined:
Context, Connection.

	
OpenSSL.SSL.SSLv2_METHOD

	
OpenSSL.SSL.SSLv3_METHOD

	
OpenSSL.SSL.SSLv23_METHOD

	
OpenSSL.SSL.TLSv1_METHOD

	
OpenSSL.SSL.TLSv1_1_METHOD

	
OpenSSL.SSL.TLSv1_2_METHOD

	These constants represent the different SSL methods to use when creating a
context object. If the underlying OpenSSL build is missing support for any
of these protocols, constructing a Context using the
corresponding *_METHOD will raise an exception.

	
OpenSSL.SSL.VERIFY_NONE

	
OpenSSL.SSL.VERIFY_PEER

	
OpenSSL.SSL.VERIFY_FAIL_IF_NO_PEER_CERT

	These constants represent the verification mode used by the Context
object’s set_verify() method.

	
OpenSSL.SSL.FILETYPE_PEM

	
OpenSSL.SSL.FILETYPE_ASN1

	File type constants used with the use_certificate_file() and
use_privatekey_file() methods of Context objects.

	
OpenSSL.SSL.OP_SINGLE_DH_USE

	
OpenSSL.SSL.OP_SINGLE_ECDH_USE

	Constants used with set_options() of Context objects.

When these options are used, a new key will always be created when using
ephemeral (Elliptic curve) Diffie-Hellman.

	
OpenSSL.SSL.OP_EPHEMERAL_RSA

	Constant used with set_options() of Context objects.

When this option is used, ephemeral RSA keys will always be used when doing
RSA operations.

	
OpenSSL.SSL.OP_NO_TICKET

	Constant used with set_options() of Context objects.

When this option is used, the session ticket extension will not be used.

	
OpenSSL.SSL.OP_NO_COMPRESSION

	Constant used with set_options() of Context objects.

When this option is used, compression will not be used.

	
OpenSSL.SSL.OP_NO_SSLv2

	
OpenSSL.SSL.OP_NO_SSLv3

	
OpenSSL.SSL.OP_NO_TLSv1

	
OpenSSL.SSL.OP_NO_TLSv1_1

	
OpenSSL.SSL.OP_NO_TLSv1_2

	Constants used with set_options() of Context objects.

Each of these options disables one version of the SSL/TLS protocol. This
is interesting if you’re using e.g. SSLv23_METHOD to get an
SSLv2-compatible handshake, but don’t want to use SSLv2. If the underlying
OpenSSL build is missing support for any of these protocols, the
OP_NO_* constant may be undefined.

	
OpenSSL.SSL.SSLEAY_VERSION

	
OpenSSL.SSL.SSLEAY_CFLAGS

	
OpenSSL.SSL.SSLEAY_BUILT_ON

	
OpenSSL.SSL.SSLEAY_PLATFORM

	
OpenSSL.SSL.SSLEAY_DIR

	Constants used with SSLeay_version() to specify what OpenSSL version
information to retrieve. See the man page for the SSLeay_version() C
API for details.

	
OpenSSL.SSL.SESS_CACHE_OFF

	
OpenSSL.SSL.SESS_CACHE_CLIENT

	
OpenSSL.SSL.SESS_CACHE_SERVER

	
OpenSSL.SSL.SESS_CACHE_BOTH

	
OpenSSL.SSL.SESS_CACHE_NO_AUTO_CLEAR

	
OpenSSL.SSL.SESS_CACHE_NO_INTERNAL_LOOKUP

	
OpenSSL.SSL.SESS_CACHE_NO_INTERNAL_STORE

	
OpenSSL.SSL.SESS_CACHE_NO_INTERNAL

	Constants used with Context.set_session_cache_mode() to specify
the behavior of the session cache and potential session reuse. See the man
page for the SSL_CTX_set_session_cache_mode() C API for details.

New in version 0.14.

	
OpenSSL.SSL.OPENSSL_VERSION_NUMBER

	An integer giving the version number of the OpenSSL library used to build this
version of pyOpenSSL. See the man page for the SSLeay_version() C API
for details.

	
OpenSSL.SSL.SSLeay_version(type)

	Retrieve a string describing some aspect of the underlying OpenSSL version. The
type passed in should be one of the SSLEAY_* constants defined in
this module.

	
OpenSSL.SSL.ContextType

	See Context.

	
class OpenSSL.SSL.Context(method)

	A class representing SSL contexts. Contexts define the parameters of one or
more SSL connections.

method should be SSLv2_METHOD, SSLv3_METHOD,
SSLv23_METHOD, TLSv1_METHOD, TLSv1_1_METHOD,
or TLSv1_2_METHOD.

	
class OpenSSL.SSL.Session

	A class representing an SSL session. A session defines certain connection
parameters which may be re-used to speed up the setup of subsequent
connections.

New in version 0.14.

	
OpenSSL.SSL.ConnectionType

	See Connection.

	
class OpenSSL.SSL.Connection(context, socket)

	A class representing SSL connections.

context should be an instance of Context and socket
should be a socket [1] object. socket may be
None; in this case, the Connection is created with a memory BIO: see
the bio_read(), bio_write(), and bio_shutdown()
methods.

	
exception OpenSSL.SSL.Error

	This exception is used as a base class for the other SSL-related
exceptions, but may also be raised directly.

Whenever this exception is raised directly, it has a list of error messages
from the OpenSSL error queue, where each item is a tuple (lib, function,
reason). Here lib, function and reason are all strings, describing
where and what the problem is. See err(3) for more information.

	
exception OpenSSL.SSL.ZeroReturnError

	This exception matches the error return code
SSL_ERROR_ZERO_RETURN, and is raised when the SSL Connection has
been closed. In SSL 3.0 and TLS 1.0, this only occurs if a closure alert has
occurred in the protocol, i.e. the connection has been closed cleanly. Note
that this does not necessarily mean that the transport layer (e.g. a socket)
has been closed.

It may seem a little strange that this is an exception, but it does match an
SSL_ERROR code, and is very convenient.

	
exception OpenSSL.SSL.WantReadError

	The operation did not complete; the same I/O method should be called again
later, with the same arguments. Any I/O method can lead to this since new
handshakes can occur at any time.

The wanted read is for dirty data sent over the network, not the
clean data inside the tunnel. For a socket based SSL connection,
read means data coming at us over the network. Until that read
succeeds, the attempted OpenSSL.SSL.Connection.recv(),
OpenSSL.SSL.Connection.send(), or
OpenSSL.SSL.Connection.do_handshake() is prevented or incomplete. You
probably want to select() on the socket before trying again.

	
exception OpenSSL.SSL.WantWriteError

	See WantReadError. The socket send buffer may be too full to
write more data.

	
exception OpenSSL.SSL.WantX509LookupError

	The operation did not complete because an application callback has asked to be
called again. The I/O method should be called again later, with the same
arguments.

Note

This won’t occur in this version, as there are no such
callbacks in this version.

	
exception OpenSSL.SSL.SysCallError

	The SysCallError occurs when there’s an I/O error and OpenSSL’s
error queue does not contain any information. This can mean two things: An
error in the transport protocol, or an end of file that violates the protocol.
The parameter to the exception is always a pair (errnum,
errstr).

Context objects

Context objects have the following methods:

	
Context.check_privatekey()

	Check if the private key (loaded with use_privatekey()) matches the
certificate (loaded with use_certificate()). Returns
None if they match, raises Error otherwise.

	
Context.get_app_data()

	Retrieve application data as set by set_app_data().

	
Context.get_cert_store()

	Retrieve the certificate store (a X509Store object) that the context uses.
This can be used to add “trusted” certificates without using the
load_verify_locations() method.

	
Context.get_timeout()

	Retrieve session timeout, as set by set_timeout(). The default is 300
seconds.

	
Context.get_verify_depth()

	Retrieve the Context object’s verify depth, as set by
set_verify_depth().

	
Context.get_verify_mode()

	Retrieve the Context object’s verify mode, as set by set_verify().

	
Context.load_client_ca(cafile)

	Load the trusted certificates that will be sent to the client. Does
not actually imply any of the certificates are trusted; that must be
configured separately.

	Parameters:	cafile (bytes) – The path to a certificates file in PEM format.

	Returns:	None

	
Context.set_client_ca_list(certificate_authorities)

	Replace the current list of preferred certificate signers that would be
sent to the client when requesting a client certificate with the
certificate_authorities sequence of OpenSSL.crypto.X509Name‘s.

New in version 0.10.

	
Context.add_client_ca(certificate_authority)

	Extract a OpenSSL.crypto.X509Name from the certificate_authority
OpenSSL.crypto.X509 certificate and add it to the list of preferred
certificate signers sent to the client when requesting a client certificate.

New in version 0.10.

	
Context.load_verify_locations(pemfile, capath)

	Specify where CA certificates for verification purposes are located. These
are trusted certificates. Note that the certificates have to be in PEM
format. If capath is passed, it must be a directory prepared using the
c_rehash tool included with OpenSSL. Either, but not both, of
pemfile or capath may be None.

	
Context.set_default_verify_paths()

	Specify that the platform provided CA certificates are to be used for
verification purposes. This method may not work properly on OS X.

	
Context.load_tmp_dh(dhfile)

	Load parameters for Ephemeral Diffie-Hellman from dhfile.

	
Context.set_tmp_ecdh(curve)

	Select a curve to use for ECDHE key exchange.

The valid values of curve are the objects returned by
OpenSSL.crypto.get_elliptic_curves() or
OpenSSL.crypto.get_elliptic_curve().

	
Context.set_app_data(data)

	Associate data with this Context object. data can be retrieved
later using the get_app_data() method.

	
Context.set_cipher_list(cipher_list)

	Set the list of ciphers to be used in this context.

See the OpenSSL manual for more information (e.g.
ciphers(1)).

	Parameters:	cipher_list (bytes) – An OpenSSL cipher string.

	Returns:	None

	
Context.set_info_callback(callback)

	Set the information callback to callback. This function will be called
from time to time during SSL handshakes.

callback should take three arguments: a Connection object and two integers.
The first integer specifies where in the SSL handshake the function was
called, and the other the return code from a (possibly failed) internal
function call.

	
Context.set_options(options)

	Add SSL options. Options you have set before are not cleared!
This method should be used with the OP_* constants.

	
Context.set_mode(mode)

	Add SSL mode. Modes you have set before are not cleared! This method should
be used with the MODE_* constants.

	
Context.set_passwd_cb(callback[, userdata])

	Set the passphrase callback to callback. This function will be called
when a private key with a passphrase is loaded. callback must accept
three positional arguments. First, an integer giving the maximum length of
the passphrase it may return. If the returned passphrase is longer than
this, it will be truncated. Second, a boolean value which will be true if
the user should be prompted for the passphrase twice and the callback should
verify that the two values supplied are equal. Third, the value given as the
userdata parameter to set_passwd_cb(). If an error occurs,
callback should return a false value (e.g. an empty string).

	
Context.set_session_cache_mode(mode)

	Set the behavior of the session cache used by all connections using this
Context. The previously set mode is returned. See SESS_CACHE_*
for details about particular modes.

New in version 0.14.

	
Context.get_session_cache_mode()

	Get the current session cache mode.

New in version 0.14.

	
Context.set_session_id(buf)

	Set the session id to buf within which a session can be reused for
this Context object. This is needed when doing session resumption,
because there is no way for a stored session to know which Context
object it is associated with.

	Parameters:	buf (bytes) – The session id.

	Returns:	None

	
Context.set_timeout(timeout)

	Set the timeout for newly created sessions for this Context object to
timeout. timeout must be given in (whole) seconds. The default
value is 300 seconds. See the OpenSSL manual for more information (e.g.
SSL_CTX_set_timeout(3)).

	
Context.set_verify(mode, callback)

	Set the verification flags for this Context object to mode and specify
that callback should be used for verification callbacks. mode should be
one of VERIFY_NONE and VERIFY_PEER. If
VERIFY_PEER is used, mode can be OR:ed with
VERIFY_FAIL_IF_NO_PEER_CERT and VERIFY_CLIENT_ONCE
to further control the behaviour.

callback should take five arguments: A Connection object, an X509 object,
and three integer variables, which are in turn potential error number, error
depth and return code. callback should return true if verification passes
and false otherwise.

	
Context.set_verify_depth(depth)

	Set the maximum depth for the certificate chain verification that shall be
allowed for this Context object.

	
Context.use_certificate(cert)

	Use the certificate cert which has to be a X509 object.

	
Context.add_extra_chain_cert(cert)

	Adds the certificate cert, which has to be a X509 object, to the
certificate chain presented together with the certificate.

	
Context.use_certificate_chain_file(file)

	Load a certificate chain from file which must be PEM encoded.

	
Context.use_privatekey(pkey)

	Use the private key pkey which has to be a PKey object.

	
Context.use_certificate_file(file[, format])

	Load the first certificate found in file. The certificate must be in the
format specified by format, which is either FILETYPE_PEM or
FILETYPE_ASN1. The default is FILETYPE_PEM.

	
Context.use_privatekey_file(file[, format])

	Load the first private key found in file. The private key must be in the
format specified by format, which is either FILETYPE_PEM or
FILETYPE_ASN1. The default is FILETYPE_PEM.

	
Context.set_tlsext_servername_callback(callback)

	Specify a one-argument callable to use as the TLS extension server name
callback. When a connection using the server name extension is made using
this context, the callback will be invoked with the Connection
instance.

New in version 0.13.

	
Context.set_npn_advertise_callback(callback)

	Specify a callback function that will be called when offering Next
Protocol Negotiation [https://technotes.googlecode.com/git/nextprotoneg.html] as a server.

callback should be the callback function. It will be invoked with one
argument, the Connection instance. It should return a list of
bytestrings representing the advertised protocols, like
[b'http/1.1', b'spdy/2'].

New in version 0.15.

	
Context.set_npn_select_callback(callback):

	Specify a callback function that will be called when a server offers Next
Protocol Negotiation options.

callback should be the callback function. It will be invoked with two
arguments: the Connection, and a list of offered protocols as
bytestrings, e.g. [b'http/1.1', b'spdy/2']. It should return one of
those bytestrings, the chosen protocol.

New in version 0.15.

	
Context.set_alpn_protos(protos)

	Specify the protocols that the client is prepared to speak after the TLS
connection has been negotiated using Application Layer Protocol
Negotiation.

protos should be a list of protocols that the client is offering, each
as a bytestring. For example, [b'http/1.1', b'spdy/2'].

	
Context.set_alpn_select_callback(callback)

	Specify a callback function that will be called on the server when a client
offers protocols using Application Layer Protocol Negotiation.

callback should be the callback function. It will be invoked with two
arguments: the Connection and a list of offered protocols as
bytestrings, e.g. [b'http/1.1', b'spdy/2']. It should return one of
these bytestrings, the chosen protocol.

Session objects

Session objects have no methods.

Connection objects

Connection objects have the following methods:

	
Connection.accept()

	Call the accept() method of the underlying socket and set up SSL on the
returned socket, using the Context object supplied to this Connection object at
creation. Returns a pair (conn, address). where conn is the new
Connection object created, and address is as returned by the socket’s
accept().

	
Connection.bind(address)

	Call the bind() method of the underlying socket.

	
Connection.close()

	Call the close() method of the underlying socket. Note: If you want
correct SSL closure, you need to call the shutdown() method first.

	
Connection.connect(address)

	Call the connect() method of the underlying socket and set up SSL on the
socket, using the Context object supplied to this Connection object at
creation.

	
Connection.connect_ex(address)

	Call the connect_ex() method of the underlying socket and set up SSL on
the socket, using the Context object supplied to this Connection object at
creation. Note that if the connect_ex() method of the socket doesn’t
return 0, SSL won’t be initialized.

	
Connection.do_handshake()

	Perform an SSL handshake (usually called after renegotiate() or one of
set_accept_state() or set_accept_state()). This can raise the
same exceptions as send() and recv().

	
Connection.fileno()

	Retrieve the file descriptor number for the underlying socket.

	
Connection.listen(backlog)

	Call the listen() method of the underlying socket.

	
Connection.get_app_data()

	Retrieve application data as set by set_app_data().

	
Connection.get_cipher_list()

	Retrieve the list of ciphers used by the Connection object.

	Returns:	A list of native cipher strings.

	
Connection.get_protocol_version()

	Retrieve the version of the SSL or TLS protocol used by the Connection.
For example, it will return 0x769 for connections made over TLS
version 1.

	
Connection.get_protocol_version_name()

	Retrieve the version of the SSL or TLS protocol used by the Connection as
a unicode string. For example, it will return TLSv1 for connections
made over TLS version 1, or Unknown for connections that were not
successfully established.

	
Connection.get_client_ca_list()

	Retrieve the list of preferred client certificate issuers sent by the server
as OpenSSL.crypto.X509Name objects.

If this is a client Connection, the list will be empty until the
connection with the server is established.

If this is a server Connection, return the list of certificate
authorities that will be sent or has been sent to the client, as controlled
by this Connection‘s Context.

New in version 0.10.

	
Connection.get_context()

	Retrieve the Context object associated with this Connection.

	
Connection.set_context(context)

	Specify a replacement Context object for this Connection.

	
Connection.get_peer_certificate()

	Retrieve the other side’s certificate (if any)

	
Connection.get_peer_cert_chain()

	Retrieve the tuple of the other side’s certificate chain (if any)

	
Connection.getpeername()

	Call the getpeername() method of the underlying socket.

	
Connection.getsockname()

	Call the getsockname() method of the underlying socket.

	
Connection.getsockopt(level, optname[, buflen])

	Call the getsockopt() method of the underlying socket.

	
Connection.pending()

	Retrieve the number of bytes that can be safely read from the SSL buffer
(not the underlying transport buffer).

	
Connection.recv(bufsize[, flags])

	Receive data from the Connection. The return value is a string representing the
data received. The maximum amount of data to be received at once, is specified
by bufsize. The only supported flag is MSG_PEEK, all other flags are
ignored.

	
Connection.recv_into(buffer[, nbytes[, flags]])

	Receive data from the Connection and copy it directly into the provided
buffer. The return value is the number of bytes read from the connection.
The maximum amount of data to be received at once is specified by nbytes.
The only supported flag is MSG_PEEK, all other flags are ignored.

	
Connection.bio_write(bytes)

	If the Connection was created with a memory BIO, this method can be used to add
bytes to the read end of that memory BIO. The Connection can then read the
bytes (for example, in response to a call to recv()).

	
Connection.renegotiate()

	Renegotiate the session.

	Returns:	True if the renegotiation can be started, False otherwise

	Return type:	bool

	
Connection.renegotiate_pending()

	Check if there’s a renegotiation in progress, it will return False once
a renegotiation is finished.

	Returns:	Whether there’s a renegotiation in progress

	Return type:	bool

	
Connection.total_renegotiations()

	Find out the total number of renegotiations.

	Returns:	The number of renegotiations.

	Return type:	int

	
Connection.send(string)

	Send the string data to the Connection.

	
Connection.bio_read(bufsize)

	If the Connection was created with a memory BIO, this method can be used to
read bytes from the write end of that memory BIO. Many Connection methods will
add bytes which must be read in this manner or the buffer will eventually fill
up and the Connection will be able to take no further actions.

	
Connection.sendall(string)

	Send all of the string data to the Connection. This calls send()
repeatedly until all data is sent. If an error occurs, it’s impossible to tell
how much data has been sent.

	
Connection.set_accept_state()

	Set the connection to work in server mode. The handshake will be handled
automatically by read/write.

	
Connection.set_app_data(data)

	Associate data with this Connection object. data can be retrieved
later using the get_app_data() method.

	
Connection.set_connect_state()

	Set the connection to work in client mode. The handshake will be handled
automatically by read/write.

	
Connection.setblocking(flag)

	Call the setblocking() method of the underlying socket.

	
Connection.setsockopt(level, optname, value)

	Call the setsockopt() method of the underlying socket.

	
Connection.shutdown()

	Send the shutdown message to the Connection. Returns true if the shutdown
message exchange is completed and false otherwise (in which case you call
recv() or send() when the connection becomes
readable/writeable.

	
Connection.get_shutdown()

	Get the shutdown state of the Connection. Returns a bitvector of either or
both of SENT_SHUTDOWN and RECEIVED_SHUTDOWN.

	
Connection.set_shutdown(state)

	Set the shutdown state of the Connection. state is a bitvector of
either or both of SENT_SHUTDOWN and RECEIVED_SHUTDOWN.

	
Connection.sock_shutdown(how)

	Call the shutdown() method of the underlying socket.

	
Connection.bio_shutdown()

	If the Connection was created with a memory BIO, this method can be used to
indicate that end of file has been reached on the read end of that memory
BIO.

	
Connection.get_state_string()

	Retrieve a verbose string detailing the state of the Connection.

	Returns:	A string representing the state

	Return type:	bytes

	
Connection.client_random()

	Retrieve the random value used with the client hello message.

	
Connection.server_random()

	Retrieve the random value used with the server hello message.

	
Connection.master_key()

	Retrieve the value of the master key for this session.

	
Connection.want_read()

	Checks if more data has to be read from the transport layer to complete an
operation.

	
Connection.want_write()

	Checks if there is data to write to the transport layer to complete an
operation.

	
Connection.set_tlsext_host_name(name)

	Specify the byte string to send as the server name in the client hello message.

New in version 0.13.

	
Connection.get_servername()

	Get the value of the server name received in the client hello message.

New in version 0.13.

	
Connection.get_session()

	Get a Session instance representing the SSL session in use by
the connection, or None if there is no session.

New in version 0.14.

	
Connection.set_session(session)

	Set a new SSL session (using a Session instance) to be used by
the connection.

New in version 0.14.

	
Connection.get_finished()

	Obtain latest TLS Finished message that we sent, or None if
handshake is not completed.

New in version 0.15.

	
Connection.get_peer_finished()

	Obtain latest TLS Finished message that we expected from peer, or
None if handshake is not completed.

New in version 0.15.

	
Connection.get_cipher_name()

	Obtain the name of the currently used cipher.

New in version 0.15.

	
Connection.get_cipher_bits()

	Obtain the number of secret bits of the currently used cipher.

New in version 0.15.

	
Connection.get_cipher_version()

	Obtain the protocol name of the currently used cipher.

New in version 0.15.

	
Connection.get_next_proto_negotiated():

	Get the protocol that was negotiated by Next Protocol Negotiation. Returns
a bytestring of the protocol name. If no protocol has been negotiated yet,
returns an empty string.

New in version 0.15.

	
Connection.set_alpn_protos(protos)

	Specify the protocols that the client is prepared to speak after the TLS
connection has been negotiated using Application Layer Protocol
Negotiation.

protos should be a list of protocols that the client is offering, each
as a bytestring. For example, [b'http/1.1', b'spdy/2'].

	
Connection.get_alpn_proto_negotiated()

	Get the protocol that was negotiated by Application Layer Protocol
Negotiation. Returns a bytestring of the protocol name. If no protocol has
been negotiated yet, returns an empty string.

Footnotes

	[1]	Actually, all that is required is an object that
behaves like a socket, you could even use files, even though it’d be
tricky to get the handshakes right!

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyOpenSSL 16.1.0 documentation

Internals

We ran into three main problems developing this: Exceptions, callbacks and
accessing socket methods. This is what this chapter is about.

Exceptions

We realized early that most of the exceptions would be raised by the I/O
functions of OpenSSL, so it felt natural to mimic OpenSSL’s error code system,
translating them into Python exceptions. This naturally gives us the exceptions
SSL.ZeroReturnError, SSL.WantReadError,
SSL.WantWriteError, SSL.WantX509LookupError and
SSL.SysCallError.

For more information about this, see section SSL — An interface to the SSL-specific parts of OpenSSL.

Callbacks

Callbacks were more of a problem when pyOpenSSL was written in C.
Having switched to being written in Python using cffi, callbacks are now straightforward.
The problems that originally existed no longer do
(if you are interested in the details you can find descriptions of those problems in the version control history for this document).

Accessing Socket Methods

We quickly saw the benefit of wrapping socket methods in the
SSL.Connection class, for an easy transition into using SSL. The
problem here is that the socket module lacks a C API, and all the
methods are declared static. One approach would be to have OpenSSL as
a submodule to the socket module, placing all the code in
socketmodule.c, but this is obviously not a good solution, since you
might not want to import tonnes of extra stuff you’re not going to use when
importing the socket module. The other approach is to somehow get a
pointer to the method to be called, either the C function, or a callable Python
object. This is not really a good solution either, since there’s a lot of
lookups involved.

The way it works is that you have to supply a socket- like transport
object to the SSL.Connection. The only requirement of this object is
that it has a fileno() method that returns a file descriptor that’s
valid at the C level (i.e. you can use the system calls read and write). If you
want to use the connect() or accept() methods of the
SSL.Connection object, the transport object has to supply such
methods too. Apart from them, any method lookups in the SSL.Connection
object that fail are passed on to the underlying transport object.

Future changes might be to allow Python-level transport objects, that instead
of having fileno() methods, have read() and write()
methods, so more advanced features of Python can be used. This would probably
entail some sort of OpenSSL BIOs, but converting Python strings back and
forth is expensive, so this shouldn’t be used unless necessary. Other nice
things would be to be able to pass in different transport objects for reading
and writing, but then the fileno() method of SSL.Connection
becomes virtually useless. Also, should the method resolution be used on the
read-transport or the write-transport?

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyOpenSSL 16.1.0 documentation

Backward Compatibility

pyOpenSSL has a very strong backward compatibility policy.
Generally speaking, you shouldn’t ever be afraid of updating.

If breaking changes are needed do be done, they are:

	…announced in the Changelog.

	…the old behavior raises a DeprecationWarning for a year.

	…are done with another announcement in the Changelog.

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pyOpenSSL 16.1.0 documentation

Changelog

Versions are year-based with a strict backward-compatibility policy.
The third digit is only for regressions.

16.1.0 (2016-08-26)

Backward-incompatible changes:

none

Deprecations:

none

Changes:

	Fix memory leak in OpenSSL.crypto.dump_privatekey() with FILETYPE_TEXT.
#496 [https://github.com/pyca/pyopenssl/pull/496]

	Enable use of CRL (and more) in verify context.
#483 [https://github.com/pyca/pyopenssl/pull/483]

	OpenSSL.crypto.PKey can now be constructed from cryptography objects and also exported as such.
#439 [https://github.com/pyca/pyopenssl/pull/439]

	Support newer versions of cryptography which use opaque structs for OpenSSL 1.1.0 compatibility.

16.0.0 (2016-03-19)

This is the first release under full stewardship of PyCA.
We have made many changes to make local development more pleasing.
The test suite now passes both on Linux and OS X with OpenSSL 0.9.8, 1.0.1, and 1.0.2.
It has been moved to py.test [https://pytest.org/], all CI test runs are part of tox [https://testrun.org/tox/] and the source code has been made fully flake8 [https://flake8.readthedocs.io/] compliant.

We hope to have lowered the barrier for contributions significantly but are open to hear about any remaining frustrations.

Backward-incompatible changes:

	Python 3.2 support has been dropped.
It never had significant real world usage and has been dropped by our main dependency cryptography.
Affected users should upgrade to Python 3.3 or later.

Deprecations:

	The support for EGD has been removed.
The only affected function OpenSSL.rand.egd() now uses os.urandom() to seed the internal PRNG instead.
Please see pyca/cryptography#1636 [https://github.com/pyca/cryptography/pull/1636] for more background information on this decision.
In accordance with our backward compatibility policy OpenSSL.rand.egd() will be removed no sooner than a year from the release of 16.0.0.

Please note that you should use urandom [http://sockpuppet.org/blog/2014/02/25/safely-generate-random-numbers/] for all your secure random number needs.

	Python 2.6 support has been deprecated.
Our main dependency cryptography deprecated 2.6 in version 0.9 (2015-05-14) with no time table for actually dropping it.
pyOpenSSL will drop Python 2.6 support once cryptography does.

Changes:

	Fixed OpenSSL.SSL.Context.set_session_id, OpenSSL.SSL.Connection.renegotiate, OpenSSL.SSL.Connection.renegotiate_pending, and OpenSSL.SSL.Context.load_client_ca.
They were lacking an implementation since 0.14.
#422 [https://github.com/pyca/pyopenssl/pull/422]

	Fixed segmentation fault when using keys larger than 4096-bit to sign data.
#428 [https://github.com/pyca/pyopenssl/pull/428]

	Fixed AttributeError when OpenSSL.SSL.Connection.get_app_data() was called before setting any app data.
#304 [https://github.com/pyca/pyopenssl/pull/304]

	Added OpenSSL.crypto.dump_publickey() to dump OpenSSL.crypto.PKey objects that represent public keys, and OpenSSL.crypto.load_publickey() to load such objects from serialized representations.
#382 [https://github.com/pyca/pyopenssl/pull/382]

	Added OpenSSL.crypto.dump_crl() to dump a certificate revocation list out to a string buffer.
#368 [https://github.com/pyca/pyopenssl/pull/368]

	Added OpenSSL.SSL.Connection.get_state_string() using the OpenSSL binding state_string_long.
#358 [https://github.com/pyca/pyopenssl/pull/358]

	Added support for the socket.MSG_PEEK flag to OpenSSL.SSL.Connection.recv() and OpenSSL.SSL.Connection.recv_into().
#294 [https://github.com/pyca/pyopenssl/pull/294]

	Added OpenSSL.SSL.Connection.get_protocol_version() and OpenSSL.SSL.Connection.get_protocol_version_name().
#244 [https://github.com/pyca/pyopenssl/pull/244]

	Switched to utf8string mask by default.
OpenSSL formerly defaulted to a T61String if there were UTF-8 characters present.
This was changed to default to UTF8String in the config around 2005, but the actual code didn’t change it until late last year.
This will default us to the setting that actually works.
To revert this you can call OpenSSL.crypto._lib.ASN1_STRING_set_default_mask_asc(b"default").
#234 [https://github.com/pyca/pyopenssl/pull/234]

Older Changelog Entries

The changes from before release 16.0.0 are preserved in the repository [https://github.com/pyca/pyopenssl/blob/master/doc/ChangeLog_old.txt].

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pyOpenSSL 16.1.0 documentation

 Python Module Index

 o

 			

 		
 o	

 	[image: -]
 	
 OpenSSL	
 Python interface to OpenSSL

 	
 	
 OpenSSL.crypto	
 Generic cryptographic module

 	
 	
 OpenSSL.rand	
 An interface to the OpenSSL pseudo random number generator

 	
 	
 OpenSSL.SSL	
 An interface to the SSL-specific parts of OpenSSL

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pyOpenSSL 16.1.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

_

 	

 	__init__() (OpenSSL.crypto.X509Extension method)

 	

 	(OpenSSL.crypto.X509Name method)

 	

 	__str__() (OpenSSL.crypto.X509Extension method)

A

 	

 	accept() (OpenSSL.SSL.Connection method)

 	add() (in module OpenSSL.rand)

 	add_cert() (OpenSSL.crypto.X509Store method)

 	add_client_ca() (OpenSSL.SSL.Context method)

 	add_crl() (OpenSSL.crypto.X509Store method)

 	

 	add_extensions() (OpenSSL.crypto.X509 method)

 	

 	(OpenSSL.crypto.X509Req method)

 	add_extra_chain_cert() (OpenSSL.SSL.Context method)

 	add_revoked() (OpenSSL.crypto.CRL method)

 	all_reasons() (OpenSSL.crypto.Revoked method)

B

 	

 	b64_encode() (OpenSSL.crypto.NetscapeSPKI method)

 	bind() (OpenSSL.SSL.Connection method)

 	bio_read() (OpenSSL.SSL.Connection method)

 	bio_shutdown() (OpenSSL.SSL.Connection method)

 	

 	bio_write() (OpenSSL.SSL.Connection method)

 	bits() (OpenSSL.crypto.PKey method)

 	bytes() (in module OpenSSL.rand)

C

 	

 	check() (OpenSSL.crypto.PKey method)

 	check_privatekey() (OpenSSL.SSL.Context method)

 	cleanup() (in module OpenSSL.rand)

 	client_random() (OpenSSL.SSL.Connection method)

 	close() (OpenSSL.SSL.Connection method)

 	connect() (OpenSSL.SSL.Connection method)

 	

 	connect_ex() (OpenSSL.SSL.Connection method)

 	Connection (class in OpenSSL.SSL)

 	ConnectionType (in module OpenSSL.SSL)

 	Context (class in OpenSSL.SSL)

 	ContextType (in module OpenSSL.SSL)

 	CRL (class in OpenSSL.crypto)

D

 	

 	der() (OpenSSL.crypto.X509Name method)

 	digest() (OpenSSL.crypto.X509 method)

 	do_handshake() (OpenSSL.SSL.Connection method)

 	dump_certificate() (in module OpenSSL.crypto)

 	

 	dump_certificate_request() (in module OpenSSL.crypto)

 	dump_crl() (in module OpenSSL.crypto)

 	dump_privatekey() (in module OpenSSL.crypto)

 	dump_publickey() (in module OpenSSL.crypto)

E

 	

 	egd() (in module OpenSSL.rand)

 	Error, [1], [2]

 	

 	export() (OpenSSL.crypto.CRL method)

 	

 	(OpenSSL.crypto.PKCS12 method)

F

 	

 	fileno() (OpenSSL.SSL.Connection method)

 	FILETYPE_ASN1 (in module OpenSSL.crypto)

 	

 	(in module OpenSSL.SSL)

 	

 	FILETYPE_PEM (in module OpenSSL.crypto)

 	

 	(in module OpenSSL.SSL)

 	from_cryptography_key() (OpenSSL.crypto.PKey class method)

G

 	

 	generate_key() (OpenSSL.crypto.PKey method)

 	get_alpn_proto_negotiated() (OpenSSL.SSL.Connection method)

 	get_app_data() (OpenSSL.SSL.Connection method)

 	

 	(OpenSSL.SSL.Context method)

 	get_ca_certificates() (OpenSSL.crypto.PKCS12 method)

 	get_cert_store() (OpenSSL.SSL.Context method)

 	get_certificate() (OpenSSL.crypto.PKCS12 method)

 	get_cipher_bits() (OpenSSL.SSL.Connection method)

 	get_cipher_list() (OpenSSL.SSL.Connection method)

 	get_cipher_name() (OpenSSL.SSL.Connection method)

 	get_cipher_version() (OpenSSL.SSL.Connection method)

 	get_client_ca_list() (OpenSSL.SSL.Connection method)

 	get_components() (OpenSSL.crypto.X509Name method)

 	get_context() (OpenSSL.SSL.Connection method)

 	get_critical() (OpenSSL.crypto.X509Extension method)

 	get_data() (OpenSSL.crypto.X509Extension method)

 	get_elliptic_curve() (in module OpenSSL.crypto)

 	get_elliptic_curves() (in module OpenSSL.crypto)

 	get_extension() (OpenSSL.crypto.X509 method)

 	get_extension_count() (OpenSSL.crypto.X509 method)

 	get_extensions() (OpenSSL.crypto.X509Req method)

 	get_finished() (OpenSSL.SSL.Connection method)

 	get_friendlyname() (OpenSSL.crypto.PKCS12 method)

 	get_issuer() (OpenSSL.crypto.CRL method)

 	

 	(OpenSSL.crypto.X509 method)

 	get_notAfter() (OpenSSL.crypto.X509 method)

 	get_notBefore() (OpenSSL.crypto.X509 method)

 	get_peer_cert_chain() (OpenSSL.SSL.Connection method)

 	get_peer_certificate() (OpenSSL.SSL.Connection method)

 	get_peer_finished() (OpenSSL.SSL.Connection method)

 	

 	get_privatekey() (OpenSSL.crypto.PKCS12 method)

 	get_protocol_version() (OpenSSL.SSL.Connection method)

 	get_protocol_version_name() (OpenSSL.SSL.Connection method)

 	get_pubkey() (OpenSSL.crypto.NetscapeSPKI method)

 	

 	(OpenSSL.crypto.X509 method)

 	(OpenSSL.crypto.X509Req method)

 	get_reason() (OpenSSL.crypto.Revoked method)

 	get_rev_date() (OpenSSL.crypto.Revoked method)

 	get_revoked() (OpenSSL.crypto.CRL method)

 	get_serial() (OpenSSL.crypto.Revoked method)

 	get_serial_number() (OpenSSL.crypto.X509 method)

 	get_servername() (OpenSSL.SSL.Connection method)

 	get_session() (OpenSSL.SSL.Connection method)

 	get_session_cache_mode() (OpenSSL.SSL.Context method)

 	get_short_name() (OpenSSL.crypto.X509Extension method)

 	get_shutdown() (OpenSSL.SSL.Connection method)

 	get_signature_algorithm() (OpenSSL.crypto.X509 method)

 	get_state_string() (OpenSSL.SSL.Connection method)

 	get_subject() (OpenSSL.crypto.X509 method)

 	

 	(OpenSSL.crypto.X509Req method)

 	get_timeout() (OpenSSL.SSL.Context method)

 	get_type_name() (OpenSSL.crypto.PKCS7 method)

 	get_verify_depth() (OpenSSL.SSL.Context method)

 	get_verify_mode() (OpenSSL.SSL.Context method)

 	get_version() (OpenSSL.crypto.X509 method)

 	

 	(OpenSSL.crypto.X509Req method)

 	getpeername() (OpenSSL.SSL.Connection method)

 	getsockname() (OpenSSL.SSL.Connection method)

 	getsockopt() (OpenSSL.SSL.Connection method)

 	gmtime_adj_notAfter() (OpenSSL.crypto.X509 method)

 	gmtime_adj_notBefore() (OpenSSL.crypto.X509 method)

H

 	

 	has_expired() (OpenSSL.crypto.X509 method)

 	

 	hash() (OpenSSL.crypto.X509Name method)

L

 	

 	listen() (OpenSSL.SSL.Connection method)

 	load_certificate() (in module OpenSSL.crypto)

 	load_certificate_request() (in module OpenSSL.crypto)

 	load_client_ca() (OpenSSL.SSL.Context method)

 	load_crl() (in module OpenSSL.crypto)

 	load_file() (in module OpenSSL.rand)

 	

 	load_pkcs12() (in module OpenSSL.crypto)

 	load_pkcs7_data() (in module OpenSSL.crypto)

 	load_privatekey() (in module OpenSSL.crypto)

 	load_publickey() (in module OpenSSL.crypto)

 	load_tmp_dh() (OpenSSL.SSL.Context method)

 	load_verify_locations() (OpenSSL.SSL.Context method)

M

 	

 	master_key() (OpenSSL.SSL.Connection method)

N

 	

 	NetscapeSPKI (class in OpenSSL.crypto)

O

 	

 	OP_EPHEMERAL_RSA (in module OpenSSL.SSL)

 	OP_NO_COMPRESSION (in module OpenSSL.SSL)

 	OP_NO_SSLv2 (in module OpenSSL.SSL)

 	OP_NO_SSLv3 (in module OpenSSL.SSL)

 	OP_NO_TICKET (in module OpenSSL.SSL)

 	OP_NO_TLSv1 (in module OpenSSL.SSL)

 	OP_NO_TLSv1_1 (in module OpenSSL.SSL)

 	OP_NO_TLSv1_2 (in module OpenSSL.SSL)

 	

 	OP_SINGLE_DH_USE (in module OpenSSL.SSL)

 	OP_SINGLE_ECDH_USE (in module OpenSSL.SSL)

 	OpenSSL (module)

 	OpenSSL.crypto (module)

 	OpenSSL.rand (module)

 	OpenSSL.SSL (module)

 	OPENSSL_VERSION_NUMBER (in module OpenSSL.SSL)

P

 	

 	pending() (OpenSSL.SSL.Connection method)

 	PKCS12 (class in OpenSSL.crypto)

 	

 	PKey (class in OpenSSL.crypto)

R

 	

 	recv() (OpenSSL.SSL.Connection method)

 	recv_into() (OpenSSL.SSL.Connection method)

 	renegotiate() (OpenSSL.SSL.Connection method)

 	

 	renegotiate_pending() (OpenSSL.SSL.Connection method)

 	Revoked (class in OpenSSL.crypto)

 	
 RFC

 	

 	RFC 1750

S

 	

 	screen() (in module OpenSSL.rand)

 	seed() (in module OpenSSL.rand)

 	send() (OpenSSL.SSL.Connection method)

 	sendall() (OpenSSL.SSL.Connection method)

 	server_random() (OpenSSL.SSL.Connection method)

 	SESS_CACHE_BOTH (in module OpenSSL.SSL)

 	SESS_CACHE_CLIENT (in module OpenSSL.SSL)

 	SESS_CACHE_NO_AUTO_CLEAR (in module OpenSSL.SSL)

 	SESS_CACHE_NO_INTERNAL (in module OpenSSL.SSL)

 	SESS_CACHE_NO_INTERNAL_LOOKUP (in module OpenSSL.SSL)

 	SESS_CACHE_NO_INTERNAL_STORE (in module OpenSSL.SSL)

 	SESS_CACHE_OFF (in module OpenSSL.SSL)

 	SESS_CACHE_SERVER (in module OpenSSL.SSL)

 	Session (class in OpenSSL.SSL)

 	set_accept_state() (OpenSSL.SSL.Connection method)

 	set_alpn_protos() (OpenSSL.SSL.Connection method)

 	

 	(OpenSSL.SSL.Context method)

 	set_alpn_select_callback() (OpenSSL.SSL.Context method)

 	set_app_data() (OpenSSL.SSL.Connection method)

 	

 	(OpenSSL.SSL.Context method)

 	set_ca_certificates() (OpenSSL.crypto.PKCS12 method)

 	set_certificate() (OpenSSL.crypto.PKCS12 method)

 	set_cipher_list() (OpenSSL.SSL.Context method)

 	set_client_ca_list() (OpenSSL.SSL.Context method)

 	set_connect_state() (OpenSSL.SSL.Connection method)

 	set_context() (OpenSSL.SSL.Connection method)

 	set_default_verify_paths() (OpenSSL.SSL.Context method)

 	set_flags() (OpenSSL.crypto.X509Store method)

 	set_friendlyname() (OpenSSL.crypto.PKCS12 method)

 	set_info_callback() (OpenSSL.SSL.Context method)

 	set_issuer() (OpenSSL.crypto.X509 method)

 	set_lastUpdate() (OpenSSL.crypto.CRL method)

 	set_mode() (OpenSSL.SSL.Context method)

 	set_nextUpdate() (OpenSSL.crypto.CRL method)

 	set_notAfter() (OpenSSL.crypto.X509 method)

 	set_notBefore() (OpenSSL.crypto.X509 method)

 	set_npn_advertise_callback() (OpenSSL.SSL.Context method)

 	set_options() (OpenSSL.SSL.Context method)

 	set_passwd_cb() (OpenSSL.SSL.Context method)

 	

 	set_privatekey() (OpenSSL.crypto.PKCS12 method)

 	set_pubkey() (OpenSSL.crypto.NetscapeSPKI method)

 	

 	(OpenSSL.crypto.X509 method)

 	(OpenSSL.crypto.X509Req method)

 	set_reason() (OpenSSL.crypto.Revoked method)

 	set_rev_date() (OpenSSL.crypto.Revoked method)

 	set_serial() (OpenSSL.crypto.Revoked method)

 	set_serial_number() (OpenSSL.crypto.X509 method)

 	set_session() (OpenSSL.SSL.Connection method)

 	set_session_cache_mode() (OpenSSL.SSL.Context method)

 	set_session_id() (OpenSSL.SSL.Context method)

 	set_shutdown() (OpenSSL.SSL.Connection method)

 	set_store() (OpenSSL.crypto.X509StoreContext method)

 	set_subject() (OpenSSL.crypto.X509 method)

 	set_timeout() (OpenSSL.SSL.Context method)

 	set_tlsext_host_name() (OpenSSL.SSL.Connection method)

 	set_tlsext_servername_callback() (OpenSSL.SSL.Context method)

 	set_tmp_ecdh() (OpenSSL.SSL.Context method)

 	set_verify() (OpenSSL.SSL.Context method)

 	set_verify_depth() (OpenSSL.SSL.Context method)

 	set_version() (OpenSSL.crypto.CRL method)

 	

 	(OpenSSL.crypto.X509 method)

 	(OpenSSL.crypto.X509Req method)

 	setblocking() (OpenSSL.SSL.Connection method)

 	setsockopt() (OpenSSL.SSL.Connection method)

 	shutdown() (OpenSSL.SSL.Connection method)

 	sign() (in module OpenSSL.crypto)

 	

 	(OpenSSL.crypto.CRL method)

 	(OpenSSL.crypto.NetscapeSPKI method)

 	(OpenSSL.crypto.X509 method)

 	(OpenSSL.crypto.X509Req method)

 	sock_shutdown() (OpenSSL.SSL.Connection method)

 	SSLEAY_BUILT_ON (in module OpenSSL.SSL)

 	SSLEAY_CFLAGS (in module OpenSSL.SSL)

 	SSLEAY_DIR (in module OpenSSL.SSL)

 	SSLEAY_PLATFORM (in module OpenSSL.SSL)

 	SSLEAY_VERSION (in module OpenSSL.SSL)

 	SSLeay_version() (in module OpenSSL.SSL)

 	SSLv23_METHOD (in module OpenSSL.SSL)

 	SSLv2_METHOD (in module OpenSSL.SSL)

 	SSLv3_METHOD (in module OpenSSL.SSL)

 	status() (in module OpenSSL.rand)

 	subject_name_hash() (OpenSSL.crypto.X509 method)

 	SysCallError

T

 	

 	TLSv1_1_METHOD (in module OpenSSL.SSL)

 	TLSv1_2_METHOD (in module OpenSSL.SSL)

 	TLSv1_METHOD (in module OpenSSL.SSL)

 	to_cryptography_key() (OpenSSL.crypto.PKey method)

 	total_renegotiations() (OpenSSL.SSL.Connection method)

 	type() (OpenSSL.crypto.PKey method)

 	

 	TYPE_DSA (in module OpenSSL.crypto)

 	type_is_data() (OpenSSL.crypto.PKCS7 method)

 	type_is_enveloped() (OpenSSL.crypto.PKCS7 method)

 	type_is_signed() (OpenSSL.crypto.PKCS7 method)

 	type_is_signedAndEnveloped() (OpenSSL.crypto.PKCS7 method)

 	TYPE_RSA (in module OpenSSL.crypto)

U

 	

 	use_certificate() (OpenSSL.SSL.Context method)

 	use_certificate_chain_file() (OpenSSL.SSL.Context method)

 	use_certificate_file() (OpenSSL.SSL.Context method)

 	

 	use_privatekey() (OpenSSL.SSL.Context method)

 	use_privatekey_file() (OpenSSL.SSL.Context method)

V

 	

 	verify() (in module OpenSSL.crypto)

 	

 	(OpenSSL.crypto.NetscapeSPKI method)

 	(OpenSSL.crypto.X509Req method)

 	verify_certificate() (OpenSSL.crypto.X509StoreContext method)

 	VERIFY_FAIL_IF_NO_PEER_CERT (in module OpenSSL.SSL)

 	

 	VERIFY_NONE (in module OpenSSL.SSL)

 	VERIFY_PEER (in module OpenSSL.SSL)

W

 	

 	want_read() (OpenSSL.SSL.Connection method)

 	want_write() (OpenSSL.SSL.Connection method)

 	WantReadError

 	

 	WantWriteError

 	WantX509LookupError

 	write_file() (in module OpenSSL.rand)

X

 	

 	X509 (class in OpenSSL.crypto)

 	X509Extension (class in OpenSSL.crypto)

 	X509Name (class in OpenSSL.crypto)

 	X509Req (class in OpenSSL.crypto)

 	X509Store (class in OpenSSL.crypto)

 	X509StoreContext (class in OpenSSL.crypto)

 	X509StoreContextError (class in OpenSSL.crypto)

 	X509StoreFlags (class in OpenSSL.crypto)

 	X509StoreFlags.ALLOW_PROXY_CERTS (in module OpenSSL.crypto)

 	X509StoreFlags.CB_ISSUER_CHECK (in module OpenSSL.crypto)

 	

 	X509StoreFlags.CHECK_SS_SIGNATURE (in module OpenSSL.crypto)

 	X509StoreFlags.CRL_CHECK (in module OpenSSL.crypto)

 	X509StoreFlags.CRL_CHECK_ALL (in module OpenSSL.crypto)

 	X509StoreFlags.EXPLICIT_POLICY (in module OpenSSL.crypto)

 	X509StoreFlags.IGNORE_CRITICAL (in module OpenSSL.crypto)

 	X509StoreFlags.INHIBIT_MAP (in module OpenSSL.crypto)

 	X509StoreFlags.NOTIFY_POLICY (in module OpenSSL.crypto)

 	X509StoreFlags.POLICY_CHECK (in module OpenSSL.crypto)

 	X509StoreFlags.X509_STRICT (in module OpenSSL.crypto)

Z

 	

 	ZeroReturnError

 Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pyOpenSSL 16.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2001-2016, The pyOpenSSL developers.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

